Groups, in which almost all subgroups are near to normal

A subgroup \(H\) of a group \(G\) is said to be nearly normal, if \(H\) has a finite index in its normal closure. These subgroups have been introduced by B.H. Neumann. In a present paper is studied the groups whose non polycyclic by finite subgroups are nearly normal. It is not hard to show that und...

Full description

Saved in:
Bibliographic Details
Date:2018
Main Authors: Semko, M. M., Kuchmenko, S. M.
Format: Article
Language:English
Published: Lugansk National Taras Shevchenko University 2018
Subjects:
Online Access:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/993
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Algebra and Discrete Mathematics

Institution

Algebra and Discrete Mathematics
Description
Summary:A subgroup \(H\) of a group \(G\) is said to be nearly normal, if \(H\) has a finite index in its normal closure. These subgroups have been introduced by B.H. Neumann. In a present paper is studied the groups whose non polycyclic by finite subgroups are nearly normal. It is not hard to show that under some natural restrictions these groups either have a finite derived subgroup or belong to the class \(S_{1}F\) (the class of soluble by finite minimax groups). More precisely, this paper is dedicated of the study of \(S_{1}F\) groups whose non polycyclic by finite subgroups are nearly normal.