REVERBERATION RESPONSES IN LIGHT CURVES OF THE Q2237+0305 QUASAR

PACS number: 98.54.AjPurpose: Studying the spatial structure of the quasar in the Q2237+0305 gravitational lens system in optical spectral range; estimating the central black hole mass.Design/methodology/approach: The method of reverberation mapping has been used that implies measuring of the time d...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Berdina, L. A., Tsvetkova, V. S., Shulga, V. M.
Формат: Стаття
Мова:rus
Опубліковано: Видавничий дім «Академперіодика» 2018
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1298
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
id oai:ri.kharkov.ua:article-1298
record_format ojs
institution Radio physics and radio astronomy
baseUrl_str
datestamp_date 2020-06-09T10:31:20Z
collection OJS
language rus
topic quasar
black hole
spatial structure
accretion disk
reverberation mapping
spellingShingle quasar
black hole
spatial structure
accretion disk
reverberation mapping
Berdina, L. A.
Tsvetkova, V. S.
Shulga, V. M.
REVERBERATION RESPONSES IN LIGHT CURVES OF THE Q2237+0305 QUASAR
topic_facet quasar
black hole
spatial structure
accretion disk
reverberation mapping
квазар
черная дыра
пространственная структура
аккреционный диск
реверберационное картирование
квазар
чорна діра
просторова структура
акреційний диск
ревербераційне картування
format Article
author Berdina, L. A.
Tsvetkova, V. S.
Shulga, V. M.
author_facet Berdina, L. A.
Tsvetkova, V. S.
Shulga, V. M.
author_sort Berdina, L. A.
title REVERBERATION RESPONSES IN LIGHT CURVES OF THE Q2237+0305 QUASAR
title_short REVERBERATION RESPONSES IN LIGHT CURVES OF THE Q2237+0305 QUASAR
title_full REVERBERATION RESPONSES IN LIGHT CURVES OF THE Q2237+0305 QUASAR
title_fullStr REVERBERATION RESPONSES IN LIGHT CURVES OF THE Q2237+0305 QUASAR
title_full_unstemmed REVERBERATION RESPONSES IN LIGHT CURVES OF THE Q2237+0305 QUASAR
title_sort reverberation responses in light curves of the q2237+0305 quasar
title_alt РЕВЕРБЕРАЦИОННЫЕ ОТКЛИКИ В КРИВЫХ БЛЕСКА КВАЗАРА Q2237+0305
РЕВЕРБЕРАЦІЙНІ ВІДГУКИ В КРИВИХ БЛИСКУ КВАЗАРА Q2237+0305
description PACS number: 98.54.AjPurpose: Studying the spatial structure of the quasar in the Q2237+0305 gravitational lens system in optical spectral range; estimating the central black hole mass.Design/methodology/approach: The method of reverberation mapping has been used that implies measuring of the time delays between the quasar intrinsic brightness variations in different spectral ranges. We used the macroimage light curves of the Q2237+0305 system in spectral bands V (λeff = 547.7 nm) and R (λeff = 634.9 nm) of Johnson–Cousins photometric system. The reverberation mapping method allows to obtain direct estimates of distances between the quasar regions responsible for radiation in the selected spectral bands.Findings: The time delay between the V and R light curves is estimated to be 5.58±1.69 days, which is more than an order of magnitude larger than that predicted by a standard thin accretion disk model by Shakura–Sunyaev. As an explanation, a suggestion is made that the standard accretion disk model is not entirely adequate when describing an actual quasar structure.Conclusions: Such a large time delay means that reverberation responses arise in extended structures located outside the accretion disk. A suggestion that some extended structure capable to efficiently radiate in optical band may exist around the accretion disks has been reported in a number of works dedicated to the microlensing studies and analysis of flux ratio anomalies in gravitationally lensed quasars. Abolmasov and Shakura have shown analytically that a super-Eddington accretion regime may take place for some quasars, which leads to formation of an envelope. The envelope scatters radiation from the disk, thus making the apparent disk size larger. The further development in studying the spatial structure of the Q2237+0305 quasar with the use of reverberation mapping implies involving the data in spectral band I. This will provide two additional  spectral bases thus allowing investigation of a wavelength dependence of the corresponding structure dimensions.Key words: quasar, black hole, spatial structure, accretion disk, reverberation mappingManuscript submitted  19.10.2018Radio phys. radio astron. 2018, 23(4): 235-243REFERENCES1. SHAKURA, N. I. and SUNYAEV, R. A., 1973. Black holes in binary systems. Observational appearance. Astron. Astrophys. vol. 24, pp. 337–355.2. KROLIK, J. H., HORNE, K., KALLMAN, T. R., MALKAN, M. A., EDELSON, R. A. and KRISS, G. A., 1991. Ultraviolet variability of NGC 5548 – Dynamics of the continuum production region and geometry of the broadline region. Astrophys. J. vol. 371, is. 2, pp. 541–562. DOI:https://doi.org/10.1086/1699183. BLANDFORD, R. D. and MCKEE, C. F., 1982. Reverberation mapping of the emission line regions of Seyfert galaxies and quasars. Astrophys. J. vol. 255, pp. 419–439. DOI: https://doi.org/10.1086/1598434. EDRI, H., RAFTER, S. E., CHELOUCHE, D., KASPI, SH. and BEHAR, E., 2012. Broadband Photometric Reverberation Mapping of NGC 4395.  Astrophys. J. vol. 756, is. 1, id. 73. DOI: https://doi.org/10.1088/0004-637X/756/1/735. BACHEV, R. S., 2009. Quasar optical variability: searching for interband time delays. Astron. Astrophys. vol. 493, is. 3, pp. 907–911. DOI: https://doi.org/10.1051/0004-6361:2008109936. WANDERS, I., PETERSON, B. M., ALLOIN, D., AYRES, T. R., CLAVEL, J., CRENSHAW, D. M., HORNE, K., KRISS, G. A., KROLIK, J. H., MALKAN, M. A., NETZER, H., O’BRIEN, P. T., REICHERT, G. A., RODRÍGUEZ-PASCUAL, P. M., WAMSTEKER, W., ALEXANDE, T., ANDERSON, K. S. J., BENITEZ, E., BOCHKAREV, N. G., BURENKOV, A. N., CHENG, F.-Z., COLLIER, S. J., COMASTRI, A., DIETRICH, M., DULTZIN-HACYAN, D., ESPEY, B. R., FILIPPENKO, A. V., GASKEL, C. M., GEORGE, I. M., GOAD, M. R., HO, L. C., KASPI, S., KOLLATSCHNY, W., KORIST, A. K. T., LAOR, A., MACALPINE, G. M., MIGNOLI, M., MORRIS, S. L., NANDRA, K., PENTON, S., POGGE, R. W., PTAK, R. L., RODRÍGUEZESPINOZA, J. M., SANTOS-LLEÓ, M., SHAPOVALOVA, A. I., SHULL, J. M., SNEDDEN, S. A., SPARKE, L. S., STIRPE, G. M., SUN, W.-H., TURNER, T. J., ULRICH, M.-H., WANG, T.-G., WEI, C., WELSH, W. F., XUE, S.-J. and ZOU, Z.-L., 1997. Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XI. Intensive Monitoring of the Ultraviolet Spectrum of NGC 7469. Astrophys. J. Suppl. Ser. vol. 113, is. 1, pp. 69–88.7. COLLIER, S., HORNE, K., WANDERS, I. and PETERSON, B. M., 1999. A new direct method for measuring the Hubble constant from reverberating accretion discs in active galaxies. Mon. Not. R. Astron. Soc. vol. 302, is. 1, pp. L24–L28. DOI: https://doi.org/10.1046/j.1365-8711.1999.02250.x8. COLLIER, S., 2001. Evidence for accretion disc reprocessing in QSO 0957+561. Mon. Not. R. Astron. Soc. vol. 325, is. 4, pp. 1527–1532. DOI: https://doi.org/10.1046/j.1365-8711.2001.04568.x9. SERGEEV, S. G., DOROSHENKO, V. T., GOLUBINSKIY, YU. V., MERKULOVA, N. I. and SERGEEVA, E. A., 2005. Lag-luminosity relationship for interband lag between variations in b, v, r, and i bands in active galactic nuclei. Astrophys. J. vol. 622, is. 1, pp. 129–135. DOI: https://doi.org/10.1086/42782010. CACKETT, E. M., HORNE, K. and WINKLER, H., 2007. Testing thermal reprocessing in active galactic nuclei accretion discs. Mon. Not. R. Astron. Soc. vol. 380, is. 2, pp. 669–682. DOI: https://doi.org/10.1111/j.1365-2966.2007.12098.x11. FAUSNAUGH, M. M., STARKEY, D. A., HORNE, K., KOCHANEK, C. S., PETERSON, B. M., BENTZ, M. C., DENNEY, K. D., GRIER, C. J., GRUPE, D., POGGE, R. W., DE ROSA, G., ADAMS, S. M., BARTH, A. J., BEATTY, T. G., BHATTACHARJEE, A., BORMAN, G. A., BOROSON, T. A., BOTTORFF, M. C., BROWN, J. E., BROWN, J. S., BROTHERTON, M. S., COKER, C. T., CRAWFORD, S. M., CROXALL, K. V., EFTEKHARZADEH, S., ERACLEOUS, M., JONER, M. D., HENDERSON, C. B., HOLOIEN, T. W.-S., HUTCHISON, T., KASPI, S., KIM, S., KING, A. L., LI, M., LOCHHAAS, C., MA, Z., MACINNIS, F., MANNE-NICHOLAS, E. R., MASON, M., MONTUORI, C., MOSQUERA, A., MUDD, D., MUSSO, R., NAZAROV, S. V., NGUYEN, M. L., OKHMAT, D. N., ONKEN, C. A., OUYANG, B., PANCOAST, A., PEI, L., PENNY, M. T., POLESKI, R., RAFTER, S., ROMERO-COLMENERO, E., RUNNOE, J., SAND, D. J., SCHIMOIA, J. S., SERGEEV, S. G., SHAPPEE, B. J., SIMONIAN, G. V., SOMERS, G., SPENCER, M., STEVENS, D. J., TAYAR, J., TREU, T., VALENTI, S., VAN SADERS, J., VILLANUEVA JR, S., VILLFORTH, C., WEISS, Y., WINKLER, H. and ZHU, W., 2018. Continuum Reverberation Mapping of the Accretion Disks in Two Seyfert 1 Galaxies. Astrophys. J. vol. 854, is. 2, id. 107. DOI: https://doi.org/10.3847/1538-4357/aaaa2b12. GRIER, C. and SDSS-RM Collaboration, 2017. The Sloan Digital Sky Survey Reverberation Mapping Project: Quasar Reverberation Mapping Studies. American Astronomical Society Meeting. vol. 229, id. 414.01.13. KOPTELOVA, E. A., OKNYANSKIJ, V. L. and SHIMANOVSKAYA, E. V., 2006. Determining time delay in the gravitationally lensed system QSO2237+0305. Astron. Astrophys. vol. 452, is. 1, pp. 37–46. DOI: https://doi.org/10.1051/0004-6361:2005405014. KOPTELOVA, E., OKNYANSKIJ, V., ARTAMONOV, B., and CHEN, W.-P., 2010. Multiwavelengths observations of lensed quasars: interband time delays. Mem. S. A. It. vol. 81, pp. 138–143.15. DUDINOV, V. N., SMIRNOV, G. V., VAKULIK, V. G., SERGEEV, A. V. and KOCHETOV, A. E., 2010. Gravitational Lensed System Q2237-0305 in 2001–2008: Observations at the Maidanak Mountain. Radio Phys. RadioAstron. vol. 15, is. 4, pp. 387–398. (in Russian).16. TSVETKOVA, V. S., SHULGA, V. M. and BERDINA, L. A., 2016. A simple method to determine time delays in the presence of microlensing: application to HE 0435-1112 and PG 1115+080. Mon. Not. R. Astron. Soc. vol. 461, is. 4, pp. 3714–3723. DOI: https://doi.org/10.1093/mnras/stw154017. FRANK, J., KING, A. and RAINE, D. J., 2002. Accretion Power in Astrophysics. Third Edition. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO978113916424518. POINDEXTER, S. and KOCHANEK, C. S., 2010. Microlensing Evidence that a Type 1 Quasar is Viewed Face-On. Astrophys. J. vol. 712, is. 1, pp. 668–673. DOI: https://doi.org/10.1088/0004-637X/712/1/66819. AGOL, E., JONES, B. and BLAES, O., 2000. Keck Mid-Infrared Imaging of QSO 2237+0305. Astrophys. J. vol. 545, is. 2, pp. 657–663. DOI: https://doi.org/10.1086/31784720. MORGAN, C. W., KOCHANEK, C. S., MORGAN, N. D. and FALCO, E. E., 2010. The Quasar Accretion Disk Size-Black Hole Mass Relation. Astrophys. J. vol. 712, is. 2, pp. 1129–1136. DOI: https://doi.org/10.1088/0004-637X/712/2/112921. AGOL, E. and KROLIK, J. H., 2000. Magnetic Stress at the Marginally Stable Orbit: Altered Disk Structure, Radiation, and Black Hole Spin Evolution. Astrophys. J. vol. 528, is. 1, pp. 161–170. DOI: 10.1086/3081722. GASKELL, C. M., GOOSMANN, R. W. and KLIMEK, E. S., 2008. Structure and kinematics of the broadline region and torus of Active Galactic Nuclei. Mem. S. A. It. vol. 79, pp. 1090–1095.23. EIGENBROD, A., COURBIN, F., MEYLAN, G., AGOL, E., ANGUITA, T., SCHMIDT, R. W. and WAMBSGANSS, J., 2008. Microlensing variability in the gravitationally lensed quasar QSO 2237+0305 = the Einstein Cross. II. Energy profile of the accretion disk. Astron. Astrophys. vol. 490, is. 3, pp. 933–943. DOI: https://doi.org/10.1051/0004-6361:20081072924. VIVES-ARIAS, H., MUÑOZ, J. A., KOCHANEK, C. S., MEDIAVILLA, E. and JIMÉNEZ-VICENTE, J., 2016. Observations of the Lensed Quasar Q2237+0305 with CanariCam at GTC. Astrophys. J. vol. 831, is. 1, id. 43. DOI: https://doi.org/10.3847/0004-637X/831/1/4325. ELVIS, M., 2000. A Structure for Quasars. Astrophys. J. vol. 545, is. 1, pp. 63–76. DOI: https://doi.org/10.1086/31777826. URRY, C. M. and PADOVANI, P., 1995. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. vol. 107, no. 715, pp. 803–845. DOI:https://doi.org/10.1086/13363027. JAROSZYNSKI, M., WAMBSGANSS, J., and PACZYNSKI, B., 1992. Microlensed light curves for thin accretion disks around Schwarzschild and Kerr black holes. Astrophys. J. vol. 396, is. 2, pp. L65–L68. DOI: https://doi.org/10.1086/18651828. WITT, H. J. and MAO, S., 1994. Interpretation of microlensing events in Q2237+0305. Astrophys. J. vol. 429, is. 1, pp. 66–76. DOI: https://doi.org/10.1086/17430229. VAKULIK, V. G., SCHILD, R. E., SMIRNOV, G. V., DUDINOV, V. N. and TSVETKOVA, V. S., 2007. Q2237+0305 source structure and dimensions from light-curve simulation. Mon. Not. R. Astron. Soc. vol. 382, is. 2, pp. 819–825. DOI: https://doi.org/10.1111/j.1365-2966.2007.12422.x30. POOLEY, D., BLACKBURNE, J. A., RAPPAPORT, S. and SCHECHTER, P. L., 2007. X-ray and optical flux ratio anomalies in quadruply lensed quasars. I. Zooming in on quasar emission regions. Astrophys. J. vol. 661, is. 1, pp. 19–29.31. POINDEXTER, S., MORGAN, N. and KOCHANEK, C. S., 2008. The Spatial Structure of an Accretion Disk. Astrophys. J. vol. 673, is. 1, pp. 34–38. DOI: https://doi.org/10.1086/52419032. ABOLMASOV, P. and SHAKURA, N. I., 2012. Microlensing evidence for super-Eddington disc accretion in quasars. Mon. Not. R. Astron. Soc. vol. 427, is. 3, pp. 1867–1876. DOI: https://doi.org/10.1111/j.1365-2966.2012.21881.x33. OHSUGA, K. and MINESHIGE, S., 2011. Global Structure of Three Distinct Accretion Flows and Outflows around Black Holes from Two-dimensional Radiation-magnetohydrodynamic Simulations. Astrophys. J. vol. 736, is. 1, id. 2. DOI: https://doi.org/10.1088/0004-637X/736/1/2
publisher Видавничий дім «Академперіодика»
publishDate 2018
url http://rpra-journal.org.ua/index.php/ra/article/view/1298
work_keys_str_mv AT berdinala reverberationresponsesinlightcurvesoftheq22370305quasar
AT tsvetkovavs reverberationresponsesinlightcurvesoftheq22370305quasar
AT shulgavm reverberationresponsesinlightcurvesoftheq22370305quasar
AT berdinala reverberacionnyeotklikivkrivyhbleskakvazaraq22370305
AT tsvetkovavs reverberacionnyeotklikivkrivyhbleskakvazaraq22370305
AT shulgavm reverberacionnyeotklikivkrivyhbleskakvazaraq22370305
AT berdinala reverberacíjnívídgukivkrivihbliskukvazaraq22370305
AT tsvetkovavs reverberacíjnívídgukivkrivihbliskukvazaraq22370305
AT shulgavm reverberacíjnívídgukivkrivihbliskukvazaraq22370305
first_indexed 2025-07-17T11:25:25Z
last_indexed 2025-07-17T11:25:25Z
_version_ 1838411032525012992
spelling oai:ri.kharkov.ua:article-12982020-06-09T10:31:20Z REVERBERATION RESPONSES IN LIGHT CURVES OF THE Q2237+0305 QUASAR РЕВЕРБЕРАЦИОННЫЕ ОТКЛИКИ В КРИВЫХ БЛЕСКА КВАЗАРА Q2237+0305 РЕВЕРБЕРАЦІЙНІ ВІДГУКИ В КРИВИХ БЛИСКУ КВАЗАРА Q2237+0305 Berdina, L. A. Tsvetkova, V. S. Shulga, V. M. quasar; black hole; spatial structure; accretion disk; reverberation mapping квазар; черная дыра; пространственная структура; аккреционный диск; реверберационное картирование квазар; чорна діра; просторова структура; акреційний диск; ревербераційне картування PACS number: 98.54.AjPurpose: Studying the spatial structure of the quasar in the Q2237+0305 gravitational lens system in optical spectral range; estimating the central black hole mass.Design/methodology/approach: The method of reverberation mapping has been used that implies measuring of the time delays between the quasar intrinsic brightness variations in different spectral ranges. We used the macroimage light curves of the Q2237+0305 system in spectral bands V (λeff = 547.7 nm) and R (λeff = 634.9 nm) of Johnson–Cousins photometric system. The reverberation mapping method allows to obtain direct estimates of distances between the quasar regions responsible for radiation in the selected spectral bands.Findings: The time delay between the V and R light curves is estimated to be 5.58±1.69 days, which is more than an order of magnitude larger than that predicted by a standard thin accretion disk model by Shakura–Sunyaev. As an explanation, a suggestion is made that the standard accretion disk model is not entirely adequate when describing an actual quasar structure.Conclusions: Such a large time delay means that reverberation responses arise in extended structures located outside the accretion disk. A suggestion that some extended structure capable to efficiently radiate in optical band may exist around the accretion disks has been reported in a number of works dedicated to the microlensing studies and analysis of flux ratio anomalies in gravitationally lensed quasars. Abolmasov and Shakura have shown analytically that a super-Eddington accretion regime may take place for some quasars, which leads to formation of an envelope. The envelope scatters radiation from the disk, thus making the apparent disk size larger. The further development in studying the spatial structure of the Q2237+0305 quasar with the use of reverberation mapping implies involving the data in spectral band I. This will provide two additional  spectral bases thus allowing investigation of a wavelength dependence of the corresponding structure dimensions.Key words: quasar, black hole, spatial structure, accretion disk, reverberation mappingManuscript submitted  19.10.2018Radio phys. radio astron. 2018, 23(4): 235-243REFERENCES1. SHAKURA, N. I. and SUNYAEV, R. A., 1973. Black holes in binary systems. Observational appearance. Astron. Astrophys. vol. 24, pp. 337–355.2. KROLIK, J. H., HORNE, K., KALLMAN, T. R., MALKAN, M. A., EDELSON, R. A. and KRISS, G. A., 1991. Ultraviolet variability of NGC 5548 – Dynamics of the continuum production region and geometry of the broadline region. Astrophys. J. vol. 371, is. 2, pp. 541–562. DOI:https://doi.org/10.1086/1699183. BLANDFORD, R. D. and MCKEE, C. F., 1982. Reverberation mapping of the emission line regions of Seyfert galaxies and quasars. Astrophys. J. vol. 255, pp. 419–439. DOI: https://doi.org/10.1086/1598434. EDRI, H., RAFTER, S. E., CHELOUCHE, D., KASPI, SH. and BEHAR, E., 2012. Broadband Photometric Reverberation Mapping of NGC 4395.  Astrophys. J. vol. 756, is. 1, id. 73. DOI: https://doi.org/10.1088/0004-637X/756/1/735. BACHEV, R. S., 2009. Quasar optical variability: searching for interband time delays. Astron. Astrophys. vol. 493, is. 3, pp. 907–911. DOI: https://doi.org/10.1051/0004-6361:2008109936. WANDERS, I., PETERSON, B. M., ALLOIN, D., AYRES, T. R., CLAVEL, J., CRENSHAW, D. M., HORNE, K., KRISS, G. A., KROLIK, J. H., MALKAN, M. A., NETZER, H., O’BRIEN, P. T., REICHERT, G. A., RODRÍGUEZ-PASCUAL, P. M., WAMSTEKER, W., ALEXANDE, T., ANDERSON, K. S. J., BENITEZ, E., BOCHKAREV, N. G., BURENKOV, A. N., CHENG, F.-Z., COLLIER, S. J., COMASTRI, A., DIETRICH, M., DULTZIN-HACYAN, D., ESPEY, B. R., FILIPPENKO, A. V., GASKEL, C. M., GEORGE, I. M., GOAD, M. R., HO, L. C., KASPI, S., KOLLATSCHNY, W., KORIST, A. K. T., LAOR, A., MACALPINE, G. M., MIGNOLI, M., MORRIS, S. L., NANDRA, K., PENTON, S., POGGE, R. W., PTAK, R. L., RODRÍGUEZESPINOZA, J. M., SANTOS-LLEÓ, M., SHAPOVALOVA, A. I., SHULL, J. M., SNEDDEN, S. A., SPARKE, L. S., STIRPE, G. M., SUN, W.-H., TURNER, T. J., ULRICH, M.-H., WANG, T.-G., WEI, C., WELSH, W. F., XUE, S.-J. and ZOU, Z.-L., 1997. Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XI. Intensive Monitoring of the Ultraviolet Spectrum of NGC 7469. Astrophys. J. Suppl. Ser. vol. 113, is. 1, pp. 69–88.7. COLLIER, S., HORNE, K., WANDERS, I. and PETERSON, B. M., 1999. A new direct method for measuring the Hubble constant from reverberating accretion discs in active galaxies. Mon. Not. R. Astron. Soc. vol. 302, is. 1, pp. L24–L28. DOI: https://doi.org/10.1046/j.1365-8711.1999.02250.x8. COLLIER, S., 2001. Evidence for accretion disc reprocessing in QSO 0957+561. Mon. Not. R. Astron. Soc. vol. 325, is. 4, pp. 1527–1532. DOI: https://doi.org/10.1046/j.1365-8711.2001.04568.x9. SERGEEV, S. G., DOROSHENKO, V. T., GOLUBINSKIY, YU. V., MERKULOVA, N. I. and SERGEEVA, E. A., 2005. Lag-luminosity relationship for interband lag between variations in b, v, r, and i bands in active galactic nuclei. Astrophys. J. vol. 622, is. 1, pp. 129–135. DOI: https://doi.org/10.1086/42782010. CACKETT, E. M., HORNE, K. and WINKLER, H., 2007. Testing thermal reprocessing in active galactic nuclei accretion discs. Mon. Not. R. Astron. Soc. vol. 380, is. 2, pp. 669–682. DOI: https://doi.org/10.1111/j.1365-2966.2007.12098.x11. FAUSNAUGH, M. M., STARKEY, D. A., HORNE, K., KOCHANEK, C. S., PETERSON, B. M., BENTZ, M. C., DENNEY, K. D., GRIER, C. J., GRUPE, D., POGGE, R. W., DE ROSA, G., ADAMS, S. M., BARTH, A. J., BEATTY, T. G., BHATTACHARJEE, A., BORMAN, G. A., BOROSON, T. A., BOTTORFF, M. C., BROWN, J. E., BROWN, J. S., BROTHERTON, M. S., COKER, C. T., CRAWFORD, S. M., CROXALL, K. V., EFTEKHARZADEH, S., ERACLEOUS, M., JONER, M. D., HENDERSON, C. B., HOLOIEN, T. W.-S., HUTCHISON, T., KASPI, S., KIM, S., KING, A. L., LI, M., LOCHHAAS, C., MA, Z., MACINNIS, F., MANNE-NICHOLAS, E. R., MASON, M., MONTUORI, C., MOSQUERA, A., MUDD, D., MUSSO, R., NAZAROV, S. V., NGUYEN, M. L., OKHMAT, D. N., ONKEN, C. A., OUYANG, B., PANCOAST, A., PEI, L., PENNY, M. T., POLESKI, R., RAFTER, S., ROMERO-COLMENERO, E., RUNNOE, J., SAND, D. J., SCHIMOIA, J. S., SERGEEV, S. G., SHAPPEE, B. J., SIMONIAN, G. V., SOMERS, G., SPENCER, M., STEVENS, D. J., TAYAR, J., TREU, T., VALENTI, S., VAN SADERS, J., VILLANUEVA JR, S., VILLFORTH, C., WEISS, Y., WINKLER, H. and ZHU, W., 2018. Continuum Reverberation Mapping of the Accretion Disks in Two Seyfert 1 Galaxies. Astrophys. J. vol. 854, is. 2, id. 107. DOI: https://doi.org/10.3847/1538-4357/aaaa2b12. GRIER, C. and SDSS-RM Collaboration, 2017. The Sloan Digital Sky Survey Reverberation Mapping Project: Quasar Reverberation Mapping Studies. American Astronomical Society Meeting. vol. 229, id. 414.01.13. KOPTELOVA, E. A., OKNYANSKIJ, V. L. and SHIMANOVSKAYA, E. V., 2006. Determining time delay in the gravitationally lensed system QSO2237+0305. Astron. Astrophys. vol. 452, is. 1, pp. 37–46. DOI: https://doi.org/10.1051/0004-6361:2005405014. KOPTELOVA, E., OKNYANSKIJ, V., ARTAMONOV, B., and CHEN, W.-P., 2010. Multiwavelengths observations of lensed quasars: interband time delays. Mem. S. A. It. vol. 81, pp. 138–143.15. DUDINOV, V. N., SMIRNOV, G. V., VAKULIK, V. G., SERGEEV, A. V. and KOCHETOV, A. E., 2010. Gravitational Lensed System Q2237-0305 in 2001–2008: Observations at the Maidanak Mountain. Radio Phys. RadioAstron. vol. 15, is. 4, pp. 387–398. (in Russian).16. TSVETKOVA, V. S., SHULGA, V. M. and BERDINA, L. A., 2016. A simple method to determine time delays in the presence of microlensing: application to HE 0435-1112 and PG 1115+080. Mon. Not. R. Astron. Soc. vol. 461, is. 4, pp. 3714–3723. DOI: https://doi.org/10.1093/mnras/stw154017. FRANK, J., KING, A. and RAINE, D. J., 2002. Accretion Power in Astrophysics. Third Edition. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO978113916424518. POINDEXTER, S. and KOCHANEK, C. S., 2010. Microlensing Evidence that a Type 1 Quasar is Viewed Face-On. Astrophys. J. vol. 712, is. 1, pp. 668–673. DOI: https://doi.org/10.1088/0004-637X/712/1/66819. AGOL, E., JONES, B. and BLAES, O., 2000. Keck Mid-Infrared Imaging of QSO 2237+0305. Astrophys. J. vol. 545, is. 2, pp. 657–663. DOI: https://doi.org/10.1086/31784720. MORGAN, C. W., KOCHANEK, C. S., MORGAN, N. D. and FALCO, E. E., 2010. The Quasar Accretion Disk Size-Black Hole Mass Relation. Astrophys. J. vol. 712, is. 2, pp. 1129–1136. DOI: https://doi.org/10.1088/0004-637X/712/2/112921. AGOL, E. and KROLIK, J. H., 2000. Magnetic Stress at the Marginally Stable Orbit: Altered Disk Structure, Radiation, and Black Hole Spin Evolution. Astrophys. J. vol. 528, is. 1, pp. 161–170. DOI: 10.1086/3081722. GASKELL, C. M., GOOSMANN, R. W. and KLIMEK, E. S., 2008. Structure and kinematics of the broadline region and torus of Active Galactic Nuclei. Mem. S. A. It. vol. 79, pp. 1090–1095.23. EIGENBROD, A., COURBIN, F., MEYLAN, G., AGOL, E., ANGUITA, T., SCHMIDT, R. W. and WAMBSGANSS, J., 2008. Microlensing variability in the gravitationally lensed quasar QSO 2237+0305 = the Einstein Cross. II. Energy profile of the accretion disk. Astron. Astrophys. vol. 490, is. 3, pp. 933–943. DOI: https://doi.org/10.1051/0004-6361:20081072924. VIVES-ARIAS, H., MUÑOZ, J. A., KOCHANEK, C. S., MEDIAVILLA, E. and JIMÉNEZ-VICENTE, J., 2016. Observations of the Lensed Quasar Q2237+0305 with CanariCam at GTC. Astrophys. J. vol. 831, is. 1, id. 43. DOI: https://doi.org/10.3847/0004-637X/831/1/4325. ELVIS, M., 2000. A Structure for Quasars. Astrophys. J. vol. 545, is. 1, pp. 63–76. DOI: https://doi.org/10.1086/31777826. URRY, C. M. and PADOVANI, P., 1995. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. vol. 107, no. 715, pp. 803–845. DOI:https://doi.org/10.1086/13363027. JAROSZYNSKI, M., WAMBSGANSS, J., and PACZYNSKI, B., 1992. Microlensed light curves for thin accretion disks around Schwarzschild and Kerr black holes. Astrophys. J. vol. 396, is. 2, pp. L65–L68. DOI: https://doi.org/10.1086/18651828. WITT, H. J. and MAO, S., 1994. Interpretation of microlensing events in Q2237+0305. Astrophys. J. vol. 429, is. 1, pp. 66–76. DOI: https://doi.org/10.1086/17430229. VAKULIK, V. G., SCHILD, R. E., SMIRNOV, G. V., DUDINOV, V. N. and TSVETKOVA, V. S., 2007. Q2237+0305 source structure and dimensions from light-curve simulation. Mon. Not. R. Astron. Soc. vol. 382, is. 2, pp. 819–825. DOI: https://doi.org/10.1111/j.1365-2966.2007.12422.x30. POOLEY, D., BLACKBURNE, J. A., RAPPAPORT, S. and SCHECHTER, P. L., 2007. X-ray and optical flux ratio anomalies in quadruply lensed quasars. I. Zooming in on quasar emission regions. Astrophys. J. vol. 661, is. 1, pp. 19–29.31. POINDEXTER, S., MORGAN, N. and KOCHANEK, C. S., 2008. The Spatial Structure of an Accretion Disk. Astrophys. J. vol. 673, is. 1, pp. 34–38. DOI: https://doi.org/10.1086/52419032. ABOLMASOV, P. and SHAKURA, N. I., 2012. Microlensing evidence for super-Eddington disc accretion in quasars. Mon. Not. R. Astron. Soc. vol. 427, is. 3, pp. 1867–1876. DOI: https://doi.org/10.1111/j.1365-2966.2012.21881.x33. OHSUGA, K. and MINESHIGE, S., 2011. Global Structure of Three Distinct Accretion Flows and Outflows around Black Holes from Two-dimensional Radiation-magnetohydrodynamic Simulations. Astrophys. J. vol. 736, is. 1, id. 2. DOI: https://doi.org/10.1088/0004-637X/736/1/2 УДК 523.163; 524.316.7.082-82PACS number: 98.54.AjПредмет и цель работы: Изучение пространственной структуры квазара гравитационно-линзовой системы Q2237+0305 в оптическом диапазоне; оценка массы центральной черной дыры.Методы и методология: Применен метод реверберационного картирования, предполагающий измерение времени запаздывания между колебаниями собственного блеска квазара в разных спектральных диапазонах. Использованы кривые блеска макроизображений системы Q2237+0305 в спектральных полосах V (λeff = 547.7 нм) и R (λeff = 634.9 нм) фотометрической системы Джонсона–Коузинса. Метод реверберационного картирования позволяет получать прямые оценки расстояний между областями квазара, ответственными за излучение в выбранных спектральных диапазонах.Результаты: Получена оценка времени запаздывания между кривыми блеска в спектральных полосах V и R, составляющая 5.58±1.69 сут, что более чем на порядок превосходит значение запаздывания, предсказываемое стандартной моделью тонкого аккреционного диска Шакуры–Сюняева. В качестве возможной причины высказывается предположение, что стандартная модель диска не совсем точно описывает реальную картину.Заключение: Столь большое время запаздывания означает, что реверберационные отклики возникают в протяженных структурах, располагающихся за пределами аккреционного диска. Предположение о существовании вокруг аккреционного диска некоторой протяженной структуры, эффективно излучающей в оптическом диапазоне, неоднократно высказывалось в ряде работ, посвященных анализу аномалий отношения блеска и событий микролинзирования в гравитационно-линзированных квазарах. Аболмасов и Шакура показали аналитически, что для некоторых квазаров возможен сверхэддингтоновский режим аккреции, приводящий к образованию некоторой оболочки, которая рассеивает излучение от диска, увеличивая таким образом его видимые размеры. Для дальнейшего развития работ по исследованию пространственной структуры квазара Q2237+0305 методом реверберационного картирования предполагается использовать кривые блеска в спектральной полосе I. Это обеспечит две дополнительные спектральные базы, что позволит исследовать характер зависимости размера рассматриваемой структуры от длины волны.Ключевые слова: квазар, черная дыра, пространственная структура, аккреционный диск, реверберационное картированиеСтатья поступила в редакцию 19.04.2018Radio phys. radio astron. 2018, 23(4): 235-243СПИСОК ЛИТЕРАТУРЫ1. Shakura N. I. and Sunyaev R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973. Vol. 24. P. 337–355.2. Krolik J. H., Horne K., Kallman T. R., Malkan M. A., Edelson R. A., and Kriss G. A. Ultraviolet variability of NGC 5548 – Dynamics of the continuum production region and geometry of the broad-line region. Astrophys. J. 1991. Vol. 371, Is. 2. P. 541–562. DOI: 10.1086/1699183. Blandford R. D. and McKee C. F. Reverberation mapping of the emission line regions of Seyfert galaxies and quasars. Astrophys. J. 1982. Vol. 255. P. 419–439. DOI: 10.1086/1598434. Edri H., Rafter S. E., Chelouche D., Kaspi Sh., and Behar E. Broadband Photometric Reverberation Mapping of NGC 4395. Astrophys. J. 2012. Vol. 756, Is. 1. id. 73. DOI: 10.1088/0004-637X/756/1/735. Bachev R. S. Quasar optical variability: searching for interband time delays. Astron. Astrophys. 2009. Vol. 493, Is. 3. P. 907–911. DOI: 10.1051/0004-6361:2008109936. Wanders I., Peterson B. M., Alloin D., Ayres T. R., Clavel J., Crenshaw D. M., Horne K., Kriss G. A., Krolik J. H., Malkan M. A., Netzer H., O’Brien P. T., Reichert G. A., Rodríguez-Pascual P. M., Wamsteker W., Alexande T., Anderson K. S. J., Benitez E., Bochkarev N. G., Burenkov A. N., Cheng F.-Z., Collier S. J., Comastri A., Dietrich M., Dultzin-Hacyan D., Espey B. R., Filippenko A. V., Gaskel C. M., George I. M., Goad M. R., Ho L. C., Kaspi S., Kollatschny W., Korista K. T., Laor A., MacAlpine G. M., Mignoli M., Morris S. L., Nandra K., Penton S., Pogge R. W., Ptak R. L., Rodríguez-Espinoza J. M., Santos-Lleó M., Shapovalova A. I., Shull J. M., Snedden S. A., Sparke L. S., Stirpe G. M., Sun W.-H., Turner T. J., Ulrich M.-H., Wang T.-G., Wei C., Welsh W. F., Xue S.-J., and Zou Z.-L. Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XI. Intensive Monitoring of the Ultraviolet Spectrum of NGC 7469. Astrophys. J. Suppl. Ser. 1997. Vol. 113, Is. 1. P. 69–88.7. Collier S., Horne K., Wanders I., and Peterson B. M. A new direct method for measuring the Hubble constant from reverberating accretion discs in active galaxies. Mon. Not. R. Astron. Soc. 1999. Vol. 302, Is. 1. P. L24–L28. DOI: 10.1046/j.1365-8711.1999.02250.x8. Collier S. Evidence for accretion disc reprocessing in QSO 0957+561. Mon. Not. R. Astron. Soc. 2001. Vol. 325, Is. 4. P. 1527–1532. DOI: 10.1046/j.1365-8711.2001. 04568.x9. Sergeev S. G., Doroshenko V. T., Golubinskiy Yu. V., Merkulova N. I., and Sergeeva E. A. Lag-luminosity relationship for interband lags between variations in b, v, r, and i bands in active galactic nuclei. Astrophys. J. 2005. Vol. 622, Is. 1. P. 129–135. DOI: 10.1086/42782010. Cackett E. M., Horne K., and Winkler H. Testing thermal reprocessing in active galactic nuclei accretion discs. Mon. Not. R. Astron. Soc. 2007. Vol. 380, Is. 2. P. 669–682. DOI: 10.1111/j.1365-2966.2007.12098.x11. Fausnaugh M. M., Starkey D. A., Horne K., Kochanek C. S., Peterson B. M., Bentz M. C., Denney K. D., Grier C. J., Grupe D., Pogge R. W., De Rosa G., Adams S. M., Barth A. J., Beatty T. G., Bhattacharjee A., Borman G. A., Boroson T. A., Bottorff M. C., Brown J. E., Brown J. S., Brotherton M. S., Coker C. T., Crawford S. M., Croxall K. V., Eftekharzadeh S., Eracleous M., Joner M. D., Henderson C. B., Holoien T. W.-S., Hutchison T., Kaspi S., Kim S., King A. L., Li M., Lochhaas C., Ma Z., MacInnis F., Manne-Nicholas E. R., Mason M., Montuori C., Mosquera A., Mudd D., Musso R., Nazarov S. V., Nguyen M. L., Okhmat D. N., Onken C. A., Ou-Yang B., Pancoast A., Pei L., Penny M. T., Poleski R., Rafter S., Romero-Colmenero E., Runnoe J.,  Sand D. J., Schimoia J. S., Sergeev S. G., Shappee B. J., Simonian G. V., Somers G., Spencer M., Stevens D. J., Tayar J., Treu T., Valenti S., Van Saders J., Villanueva Jr. S., Villforth C., Weiss Y., Winkler H., and Zhu W. Continuum Reverberation Mapping of the Accretion Disks in Two Seyfert 1 Galaxies. Astrophys. J. 2018. Vol. 854, Is. 2. id. 107. DOI: 10.3847/1538-4357/aaaa2b12. Grier C. and SDSS-RM Collaboration. The Sloan Digital Sky Survey Reverberation Mapping Project: Quasar Reverberation Mapping Studies. American Astronomical Society Meeting. 2017. Vol. 229. id.b414.01.13. Koptelova E. A., Oknyanskij V. L., and Shimanovskaya E. V. Determining time delay in the gravitationally lensed system QSO2237+0305. Astron. Astrophys. 2006. Vol. 452, Is. 1. P. 37–46. DOI: 10.1051/0004-6361:2005405014. Koptelova E., Oknyanskij V., Artamonov B., and Chen W.-P. Multiwavelengths observations of lensed quasars: interband time delays. Mem. S. A. It. 2010. Vol. 81. P. 138–143.15. Дудинов В. Н., Смирнов Г. В., Вакулик В. Г., Сергеев А. В., Кочетов А. Е. Гравитационно-линзовая система Q2237+0305 в 2001–2008 гг.: результаты наблюдений на горе Майданак. Радиофизика и радиоастрономия. 2010. Т. 15, № 4. С. 387–398.16. Tsvetkova V. S., Shulga V. M., and Berdina L. A. A simple method to determine time delays in the presence of microlensing: application to HE 0435-1112 and PG 1115+080. Mon. Not. R. Astron. Soc. 2016. Vol. 461, Is. 4. P. 3714–3723. DOI: 10.1093/mnras/stw154017. Frank J., King A., and Raine D. J. Accretion Power in Astrophysics. Third Edition. Cambridge: Cambridge University Press, 2002. 398 p.18. Poindexter S. and Kochanek C. S. Microlensing Evidence that a Type 1 Quasar is Viewed Face-On. Astrophys. J. 2010. Vol. 712, Is. 1. P. 668–673. DOI: 10.1088/0004-637X/712/1/66819. Agol E., Jones B., and Blaes O. Keck Mid-Infrared Imaging of QSO 2237+0305. Astrophys. J. 2000. Vol. 545, Is. 2. P. 657–663. DOI: 10.1086/31784720. Morgan C. W., Kochanek C. S., Morgan N. D., and Falco E. E. The Quasar Accretion Disk Size-Black Hole Mass Relation. Astrophys. J. 2010. Vol. 712, Is. 2. P. 1129–1136. DOI: 10.1088/0004-637X/712/2/112921. Agol E. and Krolik J. H. Magnetic Stress at the Marginally Stable Orbit: Altered Disk Structure, Radiation, and Black Hole Spin Evolution. Astrophys. J. 2000. Vol. 528, Is. 1. P. 161–170. DOI: 10.1086/3081722. Gaskell C. M., Goosmann R. W., and Klimek E. S. Structure and kinematics of the broad-line region and torus of Active Galactic Nuclei. Mem. S. A. It. 2008. Vol. 79. P. 1090–1095.23. Eigenbrod A., Courbin F., Meylan G., Agol E., Anguita T., Schmidt R. W., and Wambsganss J. Microlensing variability in the gravitationally lensed quasar QSO 2237+0305 = the Einstein Cross. II. Energy profile of the accretion disk. Astron. Astrophys. 2008. Vol. 490, Is. 3. P. 933–943.DOI: 10.1051/0004-6361:20081072924. Vives-Arias H., Muñoz J. A., Kochanek C. S., Mediavilla E., and Jiménez-Vicente J. Observations of the Lensed Quasar Q2237+0305 with CanariCam at GTC. Astrophys. J. 2016. Vol. 831, Is. 1. id. 43. DOI: 10.3847/0004-637X/831/1/4325. Elvis M. A Structure for Quasars. Astrophys. J. 2000. Vol. 545, Is. 1. P. 63–76. DOI: 10.1086/31777826. Urry C. M. and Padovani P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995. Vol. 107, No. 715. P. 803–845.27. Jaroszynski M., Wambsganss J., and Paczynski B. Microlensed light curves for thin accretion disks around Schwarzschild and Kerr black holes. Astrophys. J. 1992. Vol. 396, Is. 2. P. L65–L68. DOI: 10.1086/18651828. Witt H. J. and Mao S. Interpretation of microlensing events in Q2237+0305. Astrophys. J. 1994. Vol. 429, Is. 1. P. 66–76. DOI: 10.1086/17430229. Vakulik V. G., Schild R. E., Smirnov G. V., Dudinov V. N., and Tsvetkova V. S. Q2237+0305 source structure and dimensions from light-curve simulation. Mon. Not. R. Astron. Soc. 2007. Vol. 382, Is. 2. P. 819–825. DOI: 10.1111/j.1365-2966.2007.12422.x30. Pooley D., Blackburne J. A., Rappaport S., and Schechter P. L. X-ray and optical flux ratio anomalies in quadruply lensed quasars. I. Zooming in on quasar emission regions. Astrophys. J. 2007. Vol. 661, Is 1. P. 19–29.31. Poindexter S., Morgan N., and Kochanek C. S. The Spatial Structure of an Accretion Disk. Astrophys. J. 2008. Vol. 673, Is. 1. P. 34–38. DOI: 10.1086/52419032. Abolmasov P. and Shakura N. I. Microlensing evidence for super-Eddington disc accretion in quasars. Mon. Not. R. Astron. Soc. 2012. Vol. 427, Is. 3. P. 1867–1876. DOI: 10.1111/j.1365-2966.2012.21881.x33. Ohsuga K. and Mineshige S. Global Structure of Three Distinct Accretion Flows and Outflows around Black Holes from Two-dimensional Radiation-magnetohydrodynamic Simulations. Astrophys. J. 2011. Vol. 736, Is. 1. id. 2. DOI: 10.1088/0004-637X/736/1/2 УДК 523.163; 524.316.7.082-82PACS number: 98.54.AjПредмет і мета роботи: Вивчення просторової структури квазара гравітаційно-лінзової системи Q2237+0305 у оптичному діапазоні; оцінка маси центральної чорної діри.Методи і методологія: Застосовано метод ревербераційного картування, який передбачає вимірювання часових запізнень між коливаннями власного блиску квазара в різних спектральних діапазонах. Використано криві блиску макрозображень системи Q2237+0305 в спектральних смугах V (λeff = 547.7 нм) и R (λeff = 634.9 нм) фотометричної системи Джонсона–Коузінса. Метод ревербераційного картування дозволяє отримувати прямі оцінки відстаней між областями квазара, відповідальними за випромінювання у вибраних спектральних діапазонах.Результати: Отримано оцінку часу запізнення між кривими блиску в спектральних смугах V і R, котра становить 5.58±1.69 діб, що більш ніж на порядок перевершує значення запізнення, передбачуване стандартною моделлю тонкого акреційного диску Шакури–Сюняєва. Щодо можливої причини висловлюється припущення, що стандартна модель диску не зовсім точно описує реальну картину.Висновок: Настільки великий час запізнення означає, що ревербераційні відгуки виникають в протяжних структурах, розташованих за межами акреційного диску. Припущення про існування довкола акреційного диску деякої протяжної структури, ефективно випромінюючої в оптичному діапазоні, неодноразово висловлювалося у низці робіт, присвячених аналізу аномалій співвідношення блиску і подій мікролінзування у гравітаційно-лінзованих квазарах. Аболмасов і Шакура показали аналітично, що для деяких квазарів можливий надедінгтонівський режим акреції, що призводить до утворення деякої оболонки, яка розсіює випромінювання від диска, збільшуючи таким чином його видимі розміри. Для подальшого розвитку робіт щодо дослідження просторової структури квазара Q2237+0305 методом ревербераційного картування передбачається використати криві блиску в спектральній смузі I. Це забезпечить дві додаткові спектральні бази, що дозволить досліджувати характер залежності розміру даної структури від довжини хвилі.Ключові слова: квазар, чорна діра, просторова структура, акреційний диск, ревербераційне картуванняСтаття надійшла до редакції 19.10.2018Radio phys. radio astron. 2018, 23(4): 235-243 СПИСОК ЛІТЕРАТУРИ1. Shakura N. I. and Sunyaev R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973. Vol. 24. P. 337–355.2. Krolik J. H., Horne K., Kallman T. R., Malkan M. A., Edelson R. A., and Kriss G. A. Ultraviolet variability of NGC 5548 – Dynamics of the continuum production region and geometry of the broad-line region. Astrophys. J. 1991. Vol. 371, Is. 2. P. 541–562. DOI: 10.1086/1699183. Blandford R. D. and McKee C. F. Reverberation mapping of the emission line regions of Seyfert galaxies and quasars. Astrophys. J. 1982. Vol. 255. P. 419–439. DOI: 10.1086/1598434. Edri H., Rafter S. E., Chelouche D., Kaspi Sh., and Behar E. Broadband Photometric Reverberation Mapping of NGC 4395. Astrophys. J. 2012. Vol. 756, Is. 1. id. 73. DOI: 10.1088/0004-637X/756/1/735. Bachev R. S. Quasar optical variability: searching for interband time delays. Astron. Astrophys. 2009. Vol. 493, Is. 3. P. 907–911. DOI: 10.1051/0004-6361:2008109936. Wanders I., Peterson B. M., Alloin D., Ayres T. R., Clavel J., Crenshaw D. M., Horne K., Kriss G. A., Krolik J. H., Malkan M. A., Netzer H., O’Brien P. T., Reichert G. A., Rodríguez-Pascual P. M., Wamsteker W., Alexande T., Anderson K. S. J., Benitez E., Bochkarev N. G., Burenkov A. N., Cheng F.-Z., Collier S. J., Comastri A., Dietrich M., Dultzin-Hacyan D., Espey B. R., Filippenko A. V., Gaskel C. M., George I. M., Goad M. R., Ho L. C., Kaspi S., Kollatschny W., Korista K. T., Laor A., MacAlpine G. M., Mignoli M., Morris S. L., Nandra K., Penton S., Pogge R. W., Ptak R. L., Rodríguez-Espinoza J. M., Santos-Lleó M., Shapovalova A. I., Shull J. M., Snedden S. A., Sparke L. S., Stirpe G. M., Sun W.-H., Turner T. J., Ulrich M.-H., Wang T.-G., Wei C., Welsh W. F., Xue S.-J., and Zou Z.-L. Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XI. Intensive Monitoring of the Ultraviolet Spectrum of NGC 7469. Astrophys. J. Suppl. Ser. 1997. Vol. 113, Is. 1. P. 69–88.7. Collier S., Horne K., Wanders I., and Peterson B. M. A new direct method for measuring the Hubble constant from reverberating accretion discs in active galaxies. Mon. Not. R. Astron. Soc. 1999. Vol. 302, Is. 1. P. L24–L28. DOI: 10.1046/j.1365-8711.1999.02250.x8. Collier S. Evidence for accretion disc reprocessing in QSO 0957+561. Mon. Not. R. Astron. Soc. 2001. Vol. 325, Is. 4. P. 1527–1532. DOI: 10.1046/j.1365-8711.2001. 04568.x9. Sergeev S. G., Doroshenko V. T., Golubinskiy Yu. V., Merkulova N. I., and Sergeeva E. A. Lag-luminosity relationship for interband lags between variations in b, v, r, and i bands in active galactic nuclei. Astrophys. J. 2005. Vol. 622, Is. 1. P. 129–135. DOI: 10.1086/42782010. Cackett E. M., Horne K., and Winkler H. Testing thermal reprocessing in active galactic nuclei accretion discs. Mon. Not. R. Astron. Soc. 2007. Vol. 380, Is. 2. P. 669–682. DOI: 10.1111/j.1365-2966.2007.12098.x11. Fausnaugh M. M., Starkey D. A., Horne K., Kochanek C. S., Peterson B. M., Bentz M. C., Denney K. D., Grier C. J., Grupe D., Pogge R. W., De Rosa G., Adams S. M., Barth A. J., Beatty T. G., Bhattacharjee A., Borman G. A., Boroson T. A., Bottorff M. C., Brown J. E., Brown J. S., Brotherton M. S., Coker C. T., Crawford S. M., Croxall K. V., Eftekharzadeh S., Eracleous M., Joner M. D., Henderson C. B., Holoien T. W.-S., Hutchison T., Kaspi S., Kim S., King A. L., Li M., Lochhaas C., Ma Z., MacInnis F., Manne-Nicholas E. R., Mason M., Montuori C., Mosquera A., Mudd D., Musso R., Nazarov S. V., Nguyen M. L., Okhmat D. N., Onken C. A., Ou-Yang B., Pancoast A., Pei L., Penny M. T., Poleski R., Rafter S., Romero-Colmenero E., Runnoe J.,  Sand D. J., Schimoia J. S., Sergeev S. G., Shappee B. J., Simonian G. V., Somers G., Spencer M., Stevens D. J., Tayar J., Treu T., Valenti S., Van Saders J., Villanueva Jr. S., Villforth C., Weiss Y., Winkler H., and Zhu W. Continuum Reverberation Mapping of the Accretion Disks in Two Seyfert 1 Galaxies. Astrophys. J. 2018. Vol. 854, Is. 2. id. 107. DOI: 10.3847/1538-4357/aaaa2b12. Grier C. and SDSS-RM Collaboration. The Sloan Digital Sky Survey Reverberation Mapping Project: Quasar Reverberation Mapping Studies. American Astronomical Society Meeting. 2017. Vol. 229. id.b414.01.13. Koptelova E. A., Oknyanskij V. L., and Shimanovskaya E. V. Determining time delay in the gravitationally lensed system QSO2237+0305. Astron. Astrophys. 2006. Vol. 452, Is. 1. P. 37–46. DOI: 10.1051/0004-6361:2005405014. Koptelova E., Oknyanskij V., Artamonov B., and Chen W.-P. Multiwavelengths observations of lensed quasars: interband time delays. Mem. S. A. It. 2010. Vol. 81. P. 138–143.15. Дудинов В. Н., Смирнов Г. В., Вакулик В. Г., Сергеев А. В., Кочетов А. Е. Гравитационно-линзовая система Q2237+0305 в 2001–2008 гг.: результаты наблюдений на горе Майданак. Радиофизика и радиоастрономия. 2010. Т. 15, № 4. С. 387–398.16. Tsvetkova V. S., Shulga V. M., and Berdina L. A. A simple method to determine time delays in the presence of microlensing: application to HE 0435-1112 and PG 1115+080. Mon. Not. R. Astron. Soc. 2016. Vol. 461, Is. 4. P. 3714–3723. DOI: 10.1093/mnras/stw154017. Frank J., King A., and Raine D. J. Accretion Power in Astrophysics. Third Edition. Cambridge: Cambridge University Press, 2002. 398 p.18. Poindexter S. and Kochanek C. S. Microlensing Evidence that a Type 1 Quasar is Viewed Face-On. Astrophys. J. 2010. Vol. 712, Is. 1. P. 668–673. DOI: 10.1088/0004-637X/712/1/66819. Agol E., Jones B., and Blaes O. Keck Mid-Infrared Imaging of QSO 2237+0305. Astrophys. J. 2000. Vol. 545, Is. 2. P. 657–663. DOI: 10.1086/31784720. Morgan C. W., Kochanek C. S., Morgan N. D., and Falco E. E. The Quasar Accretion Disk Size-Black Hole Mass Relation. Astrophys. J. 2010. Vol. 712, Is. 2. P. 1129–1136. DOI: 10.1088/0004-637X/712/2/112921. Agol E. and Krolik J. H. Magnetic Stress at the Marginally Stable Orbit: Altered Disk Structure, Radiation, and Black Hole Spin Evolution. Astrophys. J. 2000. Vol. 528, Is. 1. P. 161–170. DOI: 10.1086/3081722. Gaskell C. M., Goosmann R. W., and Klimek E. S. Structure and kinematics of the broad-line region and torus of Active Galactic Nuclei. Mem. S. A. It. 2008. Vol. 79. P. 1090–1095.23. Eigenbrod A., Courbin F., Meylan G., Agol E., Anguita T., Schmidt R. W., and Wambsganss J. Microlensing variability in the gravitationally lensed quasar QSO 2237+0305 = the Einstein Cross. II. Energy profile of the accretion disk. Astron. Astrophys. 2008. Vol. 490, Is. 3. P. 933–943.DOI: 10.1051/0004-6361:20081072924. Vives-Arias H., Muñoz J. A., Kochanek C. S., Mediavilla E., and Jiménez-Vicente J. Observations of the Lensed Quasar Q2237+0305 with CanariCam at GTC. Astrophys. J. 2016. Vol. 831, Is. 1. id. 43. DOI: 10.3847/0004-637X/831/1/4325. Elvis M. A Structure for Quasars. Astrophys. J. 2000. Vol. 545, Is. 1. P. 63–76. DOI: 10.1086/31777826. Urry C. M. and Padovani P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995. Vol. 107, No. 715. P. 803–845.27. Jaroszynski M., Wambsganss J., and Paczynski B. Microlensed light curves for thin accretion disks around Schwarzschild and Kerr black holes. Astrophys. J. 1992. Vol. 396, Is. 2. P. L65–L68. DOI: 10.1086/18651828. Witt H. J. and Mao S. Interpretation of microlensing events in Q2237+0305. Astrophys. J. 1994. Vol. 429, Is. 1. P. 66–76. DOI: 10.1086/17430229. Vakulik V. G., Schild R. E., Smirnov G. V., Dudinov V. N., and Tsvetkova V. S. Q2237+0305 source structure and dimensions from light-curve simulation. Mon. Not. R. Astron. Soc. 2007. Vol. 382, Is. 2. P. 819–825. DOI: 10.1111/j.1365-2966.2007.12422.x30. Pooley D., Blackburne J. A., Rappaport S., and Schechter P. L. X-ray and optical flux ratio anomalies in quadruply lensed quasars. I. Zooming in on quasar emission regions. Astrophys. J. 2007. Vol. 661, Is 1. P. 19–29.31. Poindexter S., Morgan N., and Kochanek C. S. The Spatial Structure of an Accretion Disk. Astrophys. J. 2008. Vol. 673, Is. 1. P. 34–38. DOI: 10.1086/52419032. Abolmasov P. and Shakura N. I. Microlensing evidence for super-Eddington disc accretion in quasars. Mon. Not. R. Astron. Soc. 2012. Vol. 427, Is. 3. P. 1867–1876. DOI: 10.1111/j.1365-2966.2012.21881.x33. Ohsuga K. and Mineshige S. Global Structure of Three Distinct Accretion Flows and Outflows around Black Holes from Two-dimensional Radiation-magnetohydrodynamic Simulations. Astrophys. J. 2011. Vol. 736, Is. 1. id. 2. DOI: 10.1088/0004-637X/736/1/2 Видавничий дім «Академперіодика» 2018-12-03 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1298 10.15407/rpra23.04.235 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 23, No 4 (2018); 235 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 23, No 4 (2018); 235 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 23, No 4 (2018); 235 2415-7007 1027-9636 10.15407/rpra23.04 rus http://rpra-journal.org.ua/index.php/ra/article/view/1298/pdf Copyright (c) 2018 RADIO PHYSICS AND RADIO ASTRONOMY