CREATION AND APPROBATION OF A LOW-FREQUENCY RADIO ASTRONOMY ANTENNA FOR STUDIES OF OBJECTS OF THE UNIVERSE FROM THE MOON'S FARSIDE

Purpose: Theoretical and experimental studies of the active antenna – an element of the low-frequency radio telescope antenna array for the future observatory on the farside of the Moon.Design/methodology/approach: To study the active antenna, consisting of a complex-shaped dipole and a low-noise am...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Bubnov, I. N., Konovalenko, O. O., Tokarsky, P. L., Korolev, O. M., Yerin, S. M., Stanislavsky, L. O.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Видавничий дім «Академперіодика» 2021
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1359
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
id oai:ri.kharkov.ua:article-1359
record_format ojs
institution Radio physics and radio astronomy
baseUrl_str
datestamp_date 2021-11-17T11:48:03Z
collection OJS
language Ukrainian
topic active antenna
Moon
radio astronomy observations
sensitivity
spellingShingle active antenna
Moon
radio astronomy observations
sensitivity
Bubnov, I. N.
Konovalenko, O. O.
Tokarsky, P. L.
Korolev, O. M.
Yerin, S. M.
Stanislavsky, L. O.
CREATION AND APPROBATION OF A LOW-FREQUENCY RADIO ASTRONOMY ANTENNA FOR STUDIES OF OBJECTS OF THE UNIVERSE FROM THE MOON'S FARSIDE
topic_facet active antenna
Moon
radio astronomy observations
sensitivity
active antenna
Moon
radio astronomy observations
sensitivity
активна антена
Місяць
радіоастрономічні спостереження
чутливість
format Article
author Bubnov, I. N.
Konovalenko, O. O.
Tokarsky, P. L.
Korolev, O. M.
Yerin, S. M.
Stanislavsky, L. O.
author_facet Bubnov, I. N.
Konovalenko, O. O.
Tokarsky, P. L.
Korolev, O. M.
Yerin, S. M.
Stanislavsky, L. O.
author_sort Bubnov, I. N.
title CREATION AND APPROBATION OF A LOW-FREQUENCY RADIO ASTRONOMY ANTENNA FOR STUDIES OF OBJECTS OF THE UNIVERSE FROM THE MOON'S FARSIDE
title_short CREATION AND APPROBATION OF A LOW-FREQUENCY RADIO ASTRONOMY ANTENNA FOR STUDIES OF OBJECTS OF THE UNIVERSE FROM THE MOON'S FARSIDE
title_full CREATION AND APPROBATION OF A LOW-FREQUENCY RADIO ASTRONOMY ANTENNA FOR STUDIES OF OBJECTS OF THE UNIVERSE FROM THE MOON'S FARSIDE
title_fullStr CREATION AND APPROBATION OF A LOW-FREQUENCY RADIO ASTRONOMY ANTENNA FOR STUDIES OF OBJECTS OF THE UNIVERSE FROM THE MOON'S FARSIDE
title_full_unstemmed CREATION AND APPROBATION OF A LOW-FREQUENCY RADIO ASTRONOMY ANTENNA FOR STUDIES OF OBJECTS OF THE UNIVERSE FROM THE MOON'S FARSIDE
title_sort creation and approbation of a low-frequency radio astronomy antenna for studies of objects of the universe from the moon's farside
title_alt CREATION AND APPROBATION OF A LOW-FREQUENCY RADIO ASTRONOMY ANTENNA FOR STUDYING OBJECTS OF THE UNIVERSE FROM THE FARSIDE OF THE MOON
СТВОРЕННЯ ТА АПРОБАЦІЯ НИЗЬКОЧАСТОТНОЇ РАДІОАСТРОНОМІЧНОЇ АНТЕНИ ДЛЯ ДОСЛІДЖЕНЬ ОБ'ЄКТІВ ВСЕСВІТУ ЗІ ЗВОРОТНОГО БОКУ МІСЯЦЯ
description Purpose: Theoretical and experimental studies of the active antenna – an element of the low-frequency radio telescope antenna array for the future observatory on the farside of the Moon.Design/methodology/approach: To study the active antenna, consisting of a complex-shaped dipole and a low-noise amplifier, we used its mathematical model in the form of a two-port network, whose electrical parameters are set by the scattering matrix, the noise parameters being set by the covariance matrix of the spectral densities of noise waves. This model allows ma[1]king the correct analysis of the signal-to-noise ratio at the active antenna output with account for the external and internal noise sources. The modelling results were compared with those of experimental measurements of antenna characteristics. A series of radio astronomy observations were made with the developed antenna under the Earth environmental conditions.Findings: A numerical analysis of the radio telescope active antenna parameters has been made in a wide frequency range of 4–40 MHz. Two versions of the low-noise amplifier were developed to operate in the active antenna under the space and Earth environmental conditions. Under the Earth conditions, it has been experimentally proven that the range of problems, which such radio telescopes can effectively solve at low frequencies, is quite wide – from the solar research to the search for cosmological effects.Conclusions: The results of numerical simulations and experimental measurements obtained in this work have shown a satisfactory agreement between them for the most of the frequency range. The results of this work can be useful in the research and development of active antennas designed for operation at the decameter and hectometer wavelength ranges, particularly those intended for using under the space environmental conditions.Keywords: active antenna, Moon, radio astronomy observations, sensitivityManuscript submitted 24.05.2021Radio phys. radio astron. 2021, 26(3): 197-210REFERENCES1. SHKURATOV, Y. G., KONOVALENKO, A. A., ZAKHARENKO, V. V., STANISLAVSKY, A. A., BANNIKOVA, E. Y., KAYDASH, V. G., STANKEVICH, D. G., KOROKHIN, V. V., VAVRIV, D. M., GALUSHKO, V. G., YERIN, S. N., BUBNOV, I. N., TOKARSKY, P. L., ULYANOV, O. M., STEPKIN, S. V., LYTVYNENKO, L. N., YATSKIV, Y. S., VIDEEN, G., ZARKA, P. and RUCKER, H. O., 2019. A twofold mission to the moon: Objectives and payloads. Acta Astronautica. vol. 154, pp. 214–226. DOI: https://doi.org/10.1016/j.actaastro.2018.03.0382. SHKURATOV, YU. G., KONOVALENKO, A. A., ZAKHARENKO, V. V., STANISLAVSKY, A. A., BANNIKOVA, E. Y., KAYDASH, V. G., STANKEVICH, D. G., KOROKHIN, V. V., VAVRIV, D. M., GALUSHKO, V. G., YERIN, S. N., BUBNOV, I. N., TOKARSKY, P. L., ULYANOV, O. M., STEPKIN, S. V., LYTVYNENKO, L. M., YATSKIV, YA. S., VIDEEN, G., ZARKA, P. and RUCKER, H. O., 2018. Ukrainian Mission to the Moon: how to and with what. Space Sci. Technol. vol. 24, no. 1, pp. 3–30. (in Ukrainian). DOI: https://doi.org/10.15407/knit2018.01.0033. JESTER, S. and FALCKE, H., 2009. Science with a lunar low-frequency array: From the dark ages of the Universe to nearby exoplanets. New Astron. Rev. vol. 53, is. 1-2, pp. 1–26. DOI: https://doi.org/10.1016/j.newar.2009.02.0014. MIMOUN, D., WIECZOREK, M. A., ALKALAI, L., BANERDT, W. B., BARATOUX, D., BOUGERET, J.-L., BOULEY, S., CECCONI, B., FALCKE, H., FLOHRER, J., GARCIA, R. F., GRIMM, R., GROTT, M., GURVITS, L., JAUMANN, R., JOHNSON, C. L., KNAPMEYER, M., KOBAYASHI, N., KONOVALENKO, A., LAWRENCE, D., LE FEUVRE, M., LOGNONNÉ, P., NEAL, C., OBERST, J., OLSEN, N., RÖTTGERING, H., SPOHN, T., VENNERSTROM, S., WOAN, G. and ZARKA, P., 2012. Farside explorer: unique science from a mission to the farside of the Moon. Exp. Astron. vol. 33, is. 2-3, pp. 529–585. DOI: https://doi.org/10.1007/s10686-011-9252-35. ZARKA, P., BOUGERET, J.-L., BRIAND, C., CECCO[1]NI, B., FALCKE, H., GIRARD, J., GRIEßMEIER, J.-M., HESS, S., KLEIN-WOLT, M., KONOVALENKO, A., LAMY, L., MIMOUN, D. and AMINAEI, A., 2012. Planetary and exoplanetary low frequency radio observations from the Moon. Planet. Space Sci. vol. 74, is. 1, pp. 156–166. DOI: https://doi.org/10.1016/j.pss.2012.08.0046. STANISLAVSKY, A. A., KONOVALENKO, A. A., YERIN, S. N., BUBNOV, I. N., ZAKHARENKO, V. V., SHKURATOV, YU. G., TOKARSKY, P. L., YATSKIV, YA. S., BRAZHENKO, A. I., FRANTSUZENKO, A. V., DOROVSKYY, V. V., RUCKER, H. O. and ZARKA, P., 2018. Solar bursts as can be observed from the lunar farside with a single antenna at very low frequencies. Astron. Nachr. vol. 339, is. 7-8, pp. 559–570. DOI: https://doi.org/10.1002/asna.2018135227. KONOVALENKO, A., SODIN, L., ZAKHARENKO, V., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN, S., TOKARSKY, P., MELNIK, V., KALINICHENKO, N., STANISLAVSKY, A., KOLIADIN, V., SHEPELEV, V., DOROVSKYY, V., RYABOV, V., KOVAL, A., BUBNOV, I., YERIN, S., GRIDIN, A., KULISHENKO, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., REZNIK, A., KVASOV, G., MUKHA, D., LITVINENKO, G., KHRISTENKO, A., SHEVCHENKO, V. V., SHEVCHENKO, V. A., BELOV, A., RUDA[1]VIN, E., VASYLIEVA, I., MIROSHNICHENKO, A., VASILENKO, N., OLYAK, M., MYLOSTNA, K., SKO[1]RYK, A., SHEVTSOVA, A., PLAKHOV, M., KRAVTSOV, I., VOLVACH, Y., LYTVINENKO, O., SHEV[1]CHUK, N., ZHOUK, I., BOVKUN, V., ANTONOV, A., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHIN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A., GRIEßMEIER, J.-M., TAGGER, M., GIRARD, J., CHARRIER, D., BRIAND, C. and MANN, G., 2016. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron. vol. 42, is. 1, pp. 11–48. DOI: https://doi.org/10.1007/s10686-016-9498-x8. KONOVALENKO, A. A., FALKOVICH, I. S., KALINICHENKO, N. N., GRIDIN, A. A., BUBNOV I. N., LECACHEUX, A., ROSOLEN, C. and RUCKER, H. O., 2003. Thirty-Element Active Antenna Array as a Prototype of a Huge Low-Frequency Radio Telescope. Exp. Astron. vol. 16, is. 3, pp. 149–164. DOI: https://doi.org/10.1007/s10686-003-0030-89. FALKOVICH, I. S., KONOVALENKO, A. A., GRIDIN, A. A., SODIN, L. G., BUBNOV, I. N., KALINICHENKO, N. N.,·RASHKOVSKII, S. L., MUKHA, D. V. and TOKARSKY, P. L., 2011. Wide-band high linearity active dipole for low frequency radio astronomy. Exp. Astron. vol. 32, is. 2, pp. 127–145. DOI: https://doi.org/10.1007/s10686-011-9256-z10. STANISLAVSKY, A. A., BUBNOV, I. N., KONOVALENKO, A. A., GRIDIN, A. A., SHEVCHENKO, V. V., STANISLAVSKY, L. A., MUKHA, D. V. and KOVAL, A. A., 2014. First radio astronomy examination of the low-frequency broadband active antenna subarray. Adv. Astron. vol. 2014, id. 517058. DOI: https://doi.org/10.1155/2014/51705811. TOKARSKY, P. L., KONOVALENKO, A. A. and YERIN, S. N., 2017. Sensitivity of an Active Antenna Array Element for the Low-Frequency Radio Telescope GURT. IEEE Trans. Antennas Propag. vol. 65, is. 9, pp. 4636–4644. DOI: https://doi.org/10.1109/TAP.2017.273023812. TOKARSKY, P. L., KONOVALENKO, A. A., YERIN, S. N. and BUBNOV, I. N., 2019. An Active Antenna Subarray for the Low-Frequency Radio Telescope GURT – Part I: Design and Theoretical Model. IEEE Trans. Antennas Propag. vol. 67, is. 12, pp. 7304–7311. DOI: https://doi.org/10.1109/TAP.2019.292784113. TOKARSKY, P. L., KONOVALENKO, A. A., YERIN, S. N. and BUBNOV, I. N., 2016. Sensitivity of Active Phased Antenna Array Element of GURT Radio Telescope. Radio Phys. Radio Astron. vol. 21, no. 1, pp. 48–57. (in Russian). DOI: https://doi.org/10.15407/rpra21.01.04814. TOKARSKY, P. L., KONOVALENKO, A. A. and YERIN, S. N., 2015. Analysis of Active Phased Antenna Array Parameters for the GURT Radio Telescope. Radio Phys. Radio Astron. vol. 20, no. 2, pp. 142–153. (in Russian). DOI: https://doi.org/10.15407/rpra20.02.14215. CANE, H. V., 1979. Spectra of the non-thermal radio radiation from the galactic polar regions. Mon. Not. R. Astron. Soc. vol. 189, is. 3, pp. 465–478. DOI: https://doi.org/10.1093/mnras/189.3.46516. DULK, G. A., ERICKSON, W. C., MANNING, R. and BOUGERET, J.-L., 2001. Calibration of low-frequency radio telescopes using the galactic background radiation. Astron. Astrophys. vol. 365, no. 2, pp. 294–300. DOI: https://doi.org/10.1051/0004-6361:2000000617. DURIC, N., THEODOROU, A., SMITH, K., ZOUAOUI, G., HARRIS, M., JUNOR, W. and GAUSSIRAN, T., 2003. RFI report for the U.S. South-West [online]. [viewed 11 July 2021]. Available from ftp://gemini.haystack.edu/pub/lofar/siting_docs/SWUS_RFI.doc18. KRAUS, J. D., 1966. Radio Astronomy. NewYork: McGraw-Hill.19. WROBEL, J. M. and WALKER, R. C., 1999. Sensitivity. In: G. B. TAYLOR, C. L. CARILLI, and R. A. PERLEY, eds. Synthesis imaging in radio astronomy II, ASP Conference Series. vol. 180, pp. 171–179.20. HICKS, B. C., PARAVASTU-DALAL, N., STEWART, K. P., ERICKSON, W. C., RAY, P. S., KASSIM, N. E., BURNS, S., CLARKE, T., SCHMITT, H., CRAIG, J., HARTMAN, J. and WEILER, K. W., 2012. A Wide-Band, Active Antenna System for Long Wavelength Radio Astronomy. Publ. Astron. Soc. Pac. vol. 124, no. 920, pp. 1090–1104. DOI: https://doi.org/10.1086/66812121. KOROLEV, A. M., 2014. PHEMTs as Circuit Elements for Low-Power-Consumption Receivers/Amplifiers Operating in a Wide Temperature Range Environment. Radio Phys. Radio Astron. vol. 19, no. 2, pp. 181–185. (in Russian). DOI: https://doi.org/10.15407/rpra19.02.18122. ZAKHARENKO, V., KONOVALENKO, A., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN, S., KOLIADIN, V., KALINICHENKO, N., STANISLAVSKY, A., DOROVSKYY, V., SHEPELEV, V., BUBNOV, I., YERIN, S., MELNIK, V., KOVAL, A., SHEVCHUK, N., VASYLIEVA, I., MYLOSTNA, K., SHEVTSOVA, A., SKORYK, A., KRAVTSOV, I., VOLVACH, Y., PLAKHOV, M., VASILENKO, N., VASYLKIVSKYI, Y., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., RYABOV, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., KVASOV, G., MUKHA, D., LITVINENKO, G., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHYN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A. and GRIEßMEIER, J.-M., 2016. Digital Receivers for Low-Frequency Radio Telescopes UTR-2, URAN, GURT. J. Astron. Instrum. vol. 5, is. 4, id. 1641010. DOI: https://doi.org/10.1142/S225117171641010523. FOX, K. and TRAN, L., 2020. New Sunspots Potentially Herald Increased Solar Activity [online]. NASA: Space Weather. [viewed 13 July 2021]. Available from: https://www.nasa.gov/feature/goddard/2020/new-sunspots-herald-increased-solar-activity-cycle-sdo24. SPACEWEATHERLIVE, 2020. Real-time auroral and solar activity [online]. [viewed 13 July 2021]. Available from: https://www.spaceweatherlive.com/en/solar-activity/region/1276525. ZHELEZNYAKOV, V. V., 1970. Radio Emission of the Sun and Planets. Oxford: Permagon Press.
publisher Видавничий дім «Академперіодика»
publishDate 2021
url http://rpra-journal.org.ua/index.php/ra/article/view/1359
work_keys_str_mv AT bubnovin creationandapprobationofalowfrequencyradioastronomyantennaforstudiesofobjectsoftheuniversefromthemoonsfarside
AT konovalenkooo creationandapprobationofalowfrequencyradioastronomyantennaforstudiesofobjectsoftheuniversefromthemoonsfarside
AT tokarskypl creationandapprobationofalowfrequencyradioastronomyantennaforstudiesofobjectsoftheuniversefromthemoonsfarside
AT korolevom creationandapprobationofalowfrequencyradioastronomyantennaforstudiesofobjectsoftheuniversefromthemoonsfarside
AT yerinsm creationandapprobationofalowfrequencyradioastronomyantennaforstudiesofobjectsoftheuniversefromthemoonsfarside
AT stanislavskylo creationandapprobationofalowfrequencyradioastronomyantennaforstudiesofobjectsoftheuniversefromthemoonsfarside
AT bubnovin creationandapprobationofalowfrequencyradioastronomyantennaforstudyingobjectsoftheuniversefromthefarsideofthemoon
AT konovalenkooo creationandapprobationofalowfrequencyradioastronomyantennaforstudyingobjectsoftheuniversefromthefarsideofthemoon
AT tokarskypl creationandapprobationofalowfrequencyradioastronomyantennaforstudyingobjectsoftheuniversefromthefarsideofthemoon
AT korolevom creationandapprobationofalowfrequencyradioastronomyantennaforstudyingobjectsoftheuniversefromthefarsideofthemoon
AT yerinsm creationandapprobationofalowfrequencyradioastronomyantennaforstudyingobjectsoftheuniversefromthefarsideofthemoon
AT stanislavskylo creationandapprobationofalowfrequencyradioastronomyantennaforstudyingobjectsoftheuniversefromthefarsideofthemoon
AT bubnovin stvorennâtaaprobacíânizʹkočastotnoíradíoastronomíčnoíantenidlâdoslídženʹobêktívvsesvítuzízvorotnogobokumísâcâ
AT konovalenkooo stvorennâtaaprobacíânizʹkočastotnoíradíoastronomíčnoíantenidlâdoslídženʹobêktívvsesvítuzízvorotnogobokumísâcâ
AT tokarskypl stvorennâtaaprobacíânizʹkočastotnoíradíoastronomíčnoíantenidlâdoslídženʹobêktívvsesvítuzízvorotnogobokumísâcâ
AT korolevom stvorennâtaaprobacíânizʹkočastotnoíradíoastronomíčnoíantenidlâdoslídženʹobêktívvsesvítuzízvorotnogobokumísâcâ
AT yerinsm stvorennâtaaprobacíânizʹkočastotnoíradíoastronomíčnoíantenidlâdoslídženʹobêktívvsesvítuzízvorotnogobokumísâcâ
AT stanislavskylo stvorennâtaaprobacíânizʹkočastotnoíradíoastronomíčnoíantenidlâdoslídženʹobêktívvsesvítuzízvorotnogobokumísâcâ
first_indexed 2025-07-17T11:26:03Z
last_indexed 2025-07-17T11:26:03Z
_version_ 1838500121795362816
spelling oai:ri.kharkov.ua:article-13592021-11-17T11:48:03Z CREATION AND APPROBATION OF A LOW-FREQUENCY RADIO ASTRONOMY ANTENNA FOR STUDIES OF OBJECTS OF THE UNIVERSE FROM THE MOON'S FARSIDE CREATION AND APPROBATION OF A LOW-FREQUENCY RADIO ASTRONOMY ANTENNA FOR STUDYING OBJECTS OF THE UNIVERSE FROM THE FARSIDE OF THE MOON СТВОРЕННЯ ТА АПРОБАЦІЯ НИЗЬКОЧАСТОТНОЇ РАДІОАСТРОНОМІЧНОЇ АНТЕНИ ДЛЯ ДОСЛІДЖЕНЬ ОБ'ЄКТІВ ВСЕСВІТУ ЗІ ЗВОРОТНОГО БОКУ МІСЯЦЯ Bubnov, I. N. Konovalenko, O. O. Tokarsky, P. L. Korolev, O. M. Yerin, S. M. Stanislavsky, L. O. active antenna; Moon; radio astronomy observations; sensitivity active antenna; Moon; radio astronomy observations; sensitivity активна антена; Місяць; радіоастрономічні спостереження; чутливість Purpose: Theoretical and experimental studies of the active antenna – an element of the low-frequency radio telescope antenna array for the future observatory on the farside of the Moon.Design/methodology/approach: To study the active antenna, consisting of a complex-shaped dipole and a low-noise amplifier, we used its mathematical model in the form of a two-port network, whose electrical parameters are set by the scattering matrix, the noise parameters being set by the covariance matrix of the spectral densities of noise waves. This model allows ma[1]king the correct analysis of the signal-to-noise ratio at the active antenna output with account for the external and internal noise sources. The modelling results were compared with those of experimental measurements of antenna characteristics. A series of radio astronomy observations were made with the developed antenna under the Earth environmental conditions.Findings: A numerical analysis of the radio telescope active antenna parameters has been made in a wide frequency range of 4–40 MHz. Two versions of the low-noise amplifier were developed to operate in the active antenna under the space and Earth environmental conditions. Under the Earth conditions, it has been experimentally proven that the range of problems, which such radio telescopes can effectively solve at low frequencies, is quite wide – from the solar research to the search for cosmological effects.Conclusions: The results of numerical simulations and experimental measurements obtained in this work have shown a satisfactory agreement between them for the most of the frequency range. The results of this work can be useful in the research and development of active antennas designed for operation at the decameter and hectometer wavelength ranges, particularly those intended for using under the space environmental conditions.Keywords: active antenna, Moon, radio astronomy observations, sensitivityManuscript submitted 24.05.2021Radio phys. radio astron. 2021, 26(3): 197-210REFERENCES1. SHKURATOV, Y. G., KONOVALENKO, A. A., ZAKHARENKO, V. V., STANISLAVSKY, A. A., BANNIKOVA, E. Y., KAYDASH, V. G., STANKEVICH, D. G., KOROKHIN, V. V., VAVRIV, D. M., GALUSHKO, V. G., YERIN, S. N., BUBNOV, I. N., TOKARSKY, P. L., ULYANOV, O. M., STEPKIN, S. V., LYTVYNENKO, L. N., YATSKIV, Y. S., VIDEEN, G., ZARKA, P. and RUCKER, H. O., 2019. A twofold mission to the moon: Objectives and payloads. Acta Astronautica. vol. 154, pp. 214–226. DOI: https://doi.org/10.1016/j.actaastro.2018.03.0382. SHKURATOV, YU. G., KONOVALENKO, A. A., ZAKHARENKO, V. V., STANISLAVSKY, A. A., BANNIKOVA, E. Y., KAYDASH, V. G., STANKEVICH, D. G., KOROKHIN, V. V., VAVRIV, D. M., GALUSHKO, V. G., YERIN, S. N., BUBNOV, I. N., TOKARSKY, P. L., ULYANOV, O. M., STEPKIN, S. V., LYTVYNENKO, L. M., YATSKIV, YA. S., VIDEEN, G., ZARKA, P. and RUCKER, H. O., 2018. Ukrainian Mission to the Moon: how to and with what. Space Sci. Technol. vol. 24, no. 1, pp. 3–30. (in Ukrainian). DOI: https://doi.org/10.15407/knit2018.01.0033. JESTER, S. and FALCKE, H., 2009. Science with a lunar low-frequency array: From the dark ages of the Universe to nearby exoplanets. New Astron. Rev. vol. 53, is. 1-2, pp. 1–26. DOI: https://doi.org/10.1016/j.newar.2009.02.0014. MIMOUN, D., WIECZOREK, M. A., ALKALAI, L., BANERDT, W. B., BARATOUX, D., BOUGERET, J.-L., BOULEY, S., CECCONI, B., FALCKE, H., FLOHRER, J., GARCIA, R. F., GRIMM, R., GROTT, M., GURVITS, L., JAUMANN, R., JOHNSON, C. L., KNAPMEYER, M., KOBAYASHI, N., KONOVALENKO, A., LAWRENCE, D., LE FEUVRE, M., LOGNONNÉ, P., NEAL, C., OBERST, J., OLSEN, N., RÖTTGERING, H., SPOHN, T., VENNERSTROM, S., WOAN, G. and ZARKA, P., 2012. Farside explorer: unique science from a mission to the farside of the Moon. Exp. Astron. vol. 33, is. 2-3, pp. 529–585. DOI: https://doi.org/10.1007/s10686-011-9252-35. ZARKA, P., BOUGERET, J.-L., BRIAND, C., CECCO[1]NI, B., FALCKE, H., GIRARD, J., GRIEßMEIER, J.-M., HESS, S., KLEIN-WOLT, M., KONOVALENKO, A., LAMY, L., MIMOUN, D. and AMINAEI, A., 2012. Planetary and exoplanetary low frequency radio observations from the Moon. Planet. Space Sci. vol. 74, is. 1, pp. 156–166. DOI: https://doi.org/10.1016/j.pss.2012.08.0046. STANISLAVSKY, A. A., KONOVALENKO, A. A., YERIN, S. N., BUBNOV, I. N., ZAKHARENKO, V. V., SHKURATOV, YU. G., TOKARSKY, P. L., YATSKIV, YA. S., BRAZHENKO, A. I., FRANTSUZENKO, A. V., DOROVSKYY, V. V., RUCKER, H. O. and ZARKA, P., 2018. Solar bursts as can be observed from the lunar farside with a single antenna at very low frequencies. Astron. Nachr. vol. 339, is. 7-8, pp. 559–570. DOI: https://doi.org/10.1002/asna.2018135227. KONOVALENKO, A., SODIN, L., ZAKHARENKO, V., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN, S., TOKARSKY, P., MELNIK, V., KALINICHENKO, N., STANISLAVSKY, A., KOLIADIN, V., SHEPELEV, V., DOROVSKYY, V., RYABOV, V., KOVAL, A., BUBNOV, I., YERIN, S., GRIDIN, A., KULISHENKO, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., REZNIK, A., KVASOV, G., MUKHA, D., LITVINENKO, G., KHRISTENKO, A., SHEVCHENKO, V. V., SHEVCHENKO, V. A., BELOV, A., RUDA[1]VIN, E., VASYLIEVA, I., MIROSHNICHENKO, A., VASILENKO, N., OLYAK, M., MYLOSTNA, K., SKO[1]RYK, A., SHEVTSOVA, A., PLAKHOV, M., KRAVTSOV, I., VOLVACH, Y., LYTVINENKO, O., SHEV[1]CHUK, N., ZHOUK, I., BOVKUN, V., ANTONOV, A., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHIN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A., GRIEßMEIER, J.-M., TAGGER, M., GIRARD, J., CHARRIER, D., BRIAND, C. and MANN, G., 2016. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron. vol. 42, is. 1, pp. 11–48. DOI: https://doi.org/10.1007/s10686-016-9498-x8. KONOVALENKO, A. A., FALKOVICH, I. S., KALINICHENKO, N. N., GRIDIN, A. A., BUBNOV I. N., LECACHEUX, A., ROSOLEN, C. and RUCKER, H. O., 2003. Thirty-Element Active Antenna Array as a Prototype of a Huge Low-Frequency Radio Telescope. Exp. Astron. vol. 16, is. 3, pp. 149–164. DOI: https://doi.org/10.1007/s10686-003-0030-89. FALKOVICH, I. S., KONOVALENKO, A. A., GRIDIN, A. A., SODIN, L. G., BUBNOV, I. N., KALINICHENKO, N. N.,·RASHKOVSKII, S. L., MUKHA, D. V. and TOKARSKY, P. L., 2011. Wide-band high linearity active dipole for low frequency radio astronomy. Exp. Astron. vol. 32, is. 2, pp. 127–145. DOI: https://doi.org/10.1007/s10686-011-9256-z10. STANISLAVSKY, A. A., BUBNOV, I. N., KONOVALENKO, A. A., GRIDIN, A. A., SHEVCHENKO, V. V., STANISLAVSKY, L. A., MUKHA, D. V. and KOVAL, A. A., 2014. First radio astronomy examination of the low-frequency broadband active antenna subarray. Adv. Astron. vol. 2014, id. 517058. DOI: https://doi.org/10.1155/2014/51705811. TOKARSKY, P. L., KONOVALENKO, A. A. and YERIN, S. N., 2017. Sensitivity of an Active Antenna Array Element for the Low-Frequency Radio Telescope GURT. IEEE Trans. Antennas Propag. vol. 65, is. 9, pp. 4636–4644. DOI: https://doi.org/10.1109/TAP.2017.273023812. TOKARSKY, P. L., KONOVALENKO, A. A., YERIN, S. N. and BUBNOV, I. N., 2019. An Active Antenna Subarray for the Low-Frequency Radio Telescope GURT – Part I: Design and Theoretical Model. IEEE Trans. Antennas Propag. vol. 67, is. 12, pp. 7304–7311. DOI: https://doi.org/10.1109/TAP.2019.292784113. TOKARSKY, P. L., KONOVALENKO, A. A., YERIN, S. N. and BUBNOV, I. N., 2016. Sensitivity of Active Phased Antenna Array Element of GURT Radio Telescope. Radio Phys. Radio Astron. vol. 21, no. 1, pp. 48–57. (in Russian). DOI: https://doi.org/10.15407/rpra21.01.04814. TOKARSKY, P. L., KONOVALENKO, A. A. and YERIN, S. N., 2015. Analysis of Active Phased Antenna Array Parameters for the GURT Radio Telescope. Radio Phys. Radio Astron. vol. 20, no. 2, pp. 142–153. (in Russian). DOI: https://doi.org/10.15407/rpra20.02.14215. CANE, H. V., 1979. Spectra of the non-thermal radio radiation from the galactic polar regions. Mon. Not. R. Astron. Soc. vol. 189, is. 3, pp. 465–478. DOI: https://doi.org/10.1093/mnras/189.3.46516. DULK, G. A., ERICKSON, W. C., MANNING, R. and BOUGERET, J.-L., 2001. Calibration of low-frequency radio telescopes using the galactic background radiation. Astron. Astrophys. vol. 365, no. 2, pp. 294–300. DOI: https://doi.org/10.1051/0004-6361:2000000617. DURIC, N., THEODOROU, A., SMITH, K., ZOUAOUI, G., HARRIS, M., JUNOR, W. and GAUSSIRAN, T., 2003. RFI report for the U.S. South-West [online]. [viewed 11 July 2021]. Available from ftp://gemini.haystack.edu/pub/lofar/siting_docs/SWUS_RFI.doc18. KRAUS, J. D., 1966. Radio Astronomy. NewYork: McGraw-Hill.19. WROBEL, J. M. and WALKER, R. C., 1999. Sensitivity. In: G. B. TAYLOR, C. L. CARILLI, and R. A. PERLEY, eds. Synthesis imaging in radio astronomy II, ASP Conference Series. vol. 180, pp. 171–179.20. HICKS, B. C., PARAVASTU-DALAL, N., STEWART, K. P., ERICKSON, W. C., RAY, P. S., KASSIM, N. E., BURNS, S., CLARKE, T., SCHMITT, H., CRAIG, J., HARTMAN, J. and WEILER, K. W., 2012. A Wide-Band, Active Antenna System for Long Wavelength Radio Astronomy. Publ. Astron. Soc. Pac. vol. 124, no. 920, pp. 1090–1104. DOI: https://doi.org/10.1086/66812121. KOROLEV, A. M., 2014. PHEMTs as Circuit Elements for Low-Power-Consumption Receivers/Amplifiers Operating in a Wide Temperature Range Environment. Radio Phys. Radio Astron. vol. 19, no. 2, pp. 181–185. (in Russian). DOI: https://doi.org/10.15407/rpra19.02.18122. ZAKHARENKO, V., KONOVALENKO, A., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN, S., KOLIADIN, V., KALINICHENKO, N., STANISLAVSKY, A., DOROVSKYY, V., SHEPELEV, V., BUBNOV, I., YERIN, S., MELNIK, V., KOVAL, A., SHEVCHUK, N., VASYLIEVA, I., MYLOSTNA, K., SHEVTSOVA, A., SKORYK, A., KRAVTSOV, I., VOLVACH, Y., PLAKHOV, M., VASILENKO, N., VASYLKIVSKYI, Y., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., RYABOV, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., KVASOV, G., MUKHA, D., LITVINENKO, G., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHYN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A. and GRIEßMEIER, J.-M., 2016. Digital Receivers for Low-Frequency Radio Telescopes UTR-2, URAN, GURT. J. Astron. Instrum. vol. 5, is. 4, id. 1641010. DOI: https://doi.org/10.1142/S225117171641010523. FOX, K. and TRAN, L., 2020. New Sunspots Potentially Herald Increased Solar Activity [online]. NASA: Space Weather. [viewed 13 July 2021]. Available from: https://www.nasa.gov/feature/goddard/2020/new-sunspots-herald-increased-solar-activity-cycle-sdo24. SPACEWEATHERLIVE, 2020. Real-time auroral and solar activity [online]. [viewed 13 July 2021]. Available from: https://www.spaceweatherlive.com/en/solar-activity/region/1276525. ZHELEZNYAKOV, V. V., 1970. Radio Emission of the Sun and Planets. Oxford: Permagon Press. Purpose: Theoretical and experimental studies of the active antenna – an element of the low-frequency radio telescope antenna array for the future observatory on the farside of the Moon.Design/methodology/approach: To study the active antenna, consisting of a complex-shaped dipole and a low-noise amplifier, we used its mathematical model in the form of a two-port network, whose electrical parameters are set by the scattering matrix, the noise parameters being set by the covariance matrix of the spectral densities of noise waves. This model allows making the correct analysis of the signal-to-noise ratio at the active antenna output with account for the external and internal noise sources. The modelling results were compared with those of experimental measurements of antenna characteristics. A series of radio astronomy observations were made with the developed antenna under the Earth environmental conditions.Findings: A numerical analysis of the radio telescope active antenna parameters has been made in a wide frequency range of 4–40 MHz. Two versions of the low-noise amplifier were developed to operate in the active antenna under the space and Earth environmental conditions. Under the Earth conditions, it has been experimentally proven that the range of problems, which such radio telescopes can effectively solve at low frequencies, is quite wide – from the solar research to the search for cosmological effects.Conclusions: The results of numerical simulations and experimental measurements obtained in this work have shown a satisfactory agreement between them for the most of the frequency range. The results of this work can be useful in the research and development of active antennas designed for operation at the decameter and hectometer wavelength ranges, particularly those intended for using under the space environmental conditions.Keywords: active antenna, Moon, radio astronomy observations, sensitivityManuscript submitted 24.05.2021Radio phys. radio astron. 2021, 26(3): 197-210REFERENCES1. SHKURATOV, Y. G., KONOVALENKO, A. A., ZAKHARENKO, V. V., STANISLAVSKY, A. A., BANNIKOVA, E. Y., KAYDASH, V. G., STANKEVICH, D. G., KOROKHIN, V. V., VAVRIV, D. M., GALUSHKO, V. G., YERIN, S. N., BUBNOV, I. N., TOKARSKY, P. L., ULYANOV, O. M., STEPKIN, S. V., LYTVYNENKO, L. N., YATSKIV, Y. S., VIDEEN, G., ZARKA, P. and RUCKER, H. O., 2019. A twofold mission to the moon: Objectives and payloads. Acta Astronautica. vol. 154, pp. 214–226. DOI: https://doi.org/10.1016/j.actaastro.2018.03.0382. SHKURATOV, YU. G., KONOVALENKO, A. A., ZAKHARENKO, V. V., STANISLAVSKY, A. A., BANNIKOVA, E. Y., KAYDASH, V. G., STANKEVICH, D. G., KOROKHIN, V. V., VAVRIV, D. M., GALUSHKO, V. G., YERIN, S. N., BUBNOV, I. N., TOKARSKY, P. L., ULYANOV, O. M., STEPKIN, S. V., LYTVYNENKO, L. M., YATSKIV, YA. S., VIDEEN, G., ZARKA, P. and RUCKER, H. O., 2018. Ukrainian Mission to the Moon: how to and with what. Space Sci. Technol. vol. 24, no. 1, pp. 3–30. (in Ukrainian). DOI: https://doi.org/10.15407/knit2018.01.0033. JESTER, S. and FALCKE, H., 2009. Science with a lunar low-frequency array: From the dark ages of the Universe to nearby exoplanets. New Astron. Rev. vol. 53, is. 1-2, pp. 1–26. DOI: https://doi.org/10.1016/j.newar.2009.02.0014. MIMOUN, D., WIECZOREK, M. A., ALKALAI, L., BANERDT, W. B., BARATOUX, D., BOUGERET, J.-L., BOULEY, S., CECCONI, B., FALCKE, H., FLOHRER, J., GARCIA, R. F., GRIMM, R., GROTT, M., GURVITS, L., JAUMANN, R., JOHNSON, C. L., KNAPMEYER, M., KOBAYASHI, N., KONOVALENKO, A., LAWRENCE, D., LE FEUVRE, M., LOGNONNÉ, P., NEAL, C., OBERST, J., OLSEN, N., RÖTTGERING, H., SPOHN, T., VENNERSTROM, S., WOAN, G. and ZARKA, P., 2012. Farside explorer: unique science from a mission to the farside of the Moon. Exp. Astron. vol. 33, is. 2-3, pp. 529–585. DOI: https://doi.org/10.1007/s10686-011-9252-35. ZARKA, P., BOUGERET, J.-L., BRIAND, C., CECCO[1]NI, B., FALCKE, H., GIRARD, J., GRIEßMEIER, J.-M., HESS, S., KLEIN-WOLT, M., KONOVALENKO, A., LAMY, L., MIMOUN, D. and AMINAEI, A., 2012. Planetary and exoplanetary low frequency radio observations from the Moon. Planet. Space Sci. vol. 74, is. 1, pp. 156–166. DOI: https://doi.org/10.1016/j.pss.2012.08.0046. STANISLAVSKY, A. A., KONOVALENKO, A. A., YERIN, S. N., BUBNOV, I. N., ZAKHARENKO, V. V., SHKURATOV, YU. G., TOKARSKY, P. L., YATSKIV, YA. S., BRAZHENKO, A. I., FRANTSUZENKO, A. V., DOROVSKYY, V. V., RUCKER, H. O. and ZARKA, P., 2018. Solar bursts as can be observed from the lunar farside with a single antenna at very low frequencies. Astron. Nachr. vol. 339, is. 7-8, pp. 559–570. DOI: https://doi.org/10.1002/asna.2018135227. KONOVALENKO, A., SODIN, L., ZAKHARENKO, V., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN, S., TOKARSKY, P., MELNIK, V., KALINICHENKO, N., STANISLAVSKY, A., KOLIADIN, V., SHEPELEV, V., DOROVSKYY, V., RYABOV, V., KOVAL, A., BUBNOV, I., YERIN, S., GRIDIN, A., KULISHENKO, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., REZNIK, A., KVASOV, G., MUKHA, D., LITVINENKO, G., KHRISTENKO, A., SHEVCHENKO, V. V., SHEVCHENKO, V. A., BELOV, A., RUDA[1]VIN, E., VASYLIEVA, I., MIROSHNICHENKO, A., VASILENKO, N., OLYAK, M., MYLOSTNA, K., SKO[1]RYK, A., SHEVTSOVA, A., PLAKHOV, M., KRAVTSOV, I., VOLVACH, Y., LYTVINENKO, O., SHEV[1]CHUK, N., ZHOUK, I., BOVKUN, V., ANTONOV, A., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHIN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A., GRIEßMEIER, J.-M., TAGGER, M., GIRARD, J., CHARRIER, D., BRIAND, C. and MANN, G., 2016. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron. vol. 42, is. 1, pp. 11–48. DOI: https://doi.org/10.1007/s10686-016-9498-x8. KONOVALENKO, A. A., FALKOVICH, I. S., KALINICHENKO, N. N., GRIDIN, A. A., BUBNOV I. N., LECACHEUX, A., ROSOLEN, C. and RUCKER, H. O., 2003. Thirty-Element Active Antenna Array as a Prototype of a Huge Low-Frequency Radio Telescope. Exp. Astron. vol. 16, is. 3, pp. 149–164. DOI: https://doi.org/10.1007/s10686-003-0030-89. FALKOVICH, I. S., KONOVALENKO, A. A., GRIDIN, A. A., SODIN, L. G., BUBNOV, I. N., KALINICHENKO, N. N.,·RASHKOVSKII, S. L., MUKHA, D. V. and TOKARSKY, P. L., 2011. Wide-band high linearity active dipole for low frequency radio astronomy. Exp. Astron. vol. 32, is. 2, pp. 127–145. DOI: https://doi.org/10.1007/s10686-011-9256-z10. STANISLAVSKY, A. A., BUBNOV, I. N., KONOVALENKO, A. A., GRIDIN, A. A., SHEVCHENKO, V. V., STANISLAVSKY, L. A., MUKHA, D. V. and KOVAL, A. A., 2014. First radio astronomy examination of the low-frequency broadband active antenna subarray. Adv. Astron. vol. 2014, id. 517058. DOI: https://doi.org/10.1155/2014/51705811. TOKARSKY, P. L., KONOVALENKO, A. A. and YERIN, S. N., 2017. Sensitivity of an Active Antenna Array Element for the Low-Frequency Radio Telescope GURT. IEEE Trans. Antennas Propag. vol. 65, is. 9, pp. 4636–4644. DOI: https://doi.org/10.1109/TAP.2017.273023812. TOKARSKY, P. L., KONOVALENKO, A. A., YERIN, S. N. and BUBNOV, I. N., 2019. An Active Antenna Subarray for the Low-Frequency Radio Telescope GURT – Part I: Design and Theoretical Model. IEEE Trans. Antennas Propag. vol. 67, is. 12, pp. 7304–7311. DOI: https://doi.org/10.1109/TAP.2019.292784113. TOKARSKY, P. L., KONOVALENKO, A. A., YERIN, S. N. and BUBNOV, I. N., 2016. Sensitivity of Active Phased Antenna Array Element of GURT Radio Telescope. Radio Phys. Radio Astron. vol. 21, no. 1, pp. 48–57. (in Russian). DOI: https://doi.org/10.15407/rpra21.01.04814. TOKARSKY, P. L., KONOVALENKO, A. A. and YERIN, S. N., 2015. Analysis of Active Phased Antenna Array Parameters for the GURT Radio Telescope. Radio Phys. Radio Astron. vol. 20, no. 2, pp. 142–153. (in Russian). DOI: https://doi.org/10.15407/rpra20.02.14215. CANE, H. V., 1979. Spectra of the non-thermal radio radiation from the galactic polar regions. Mon. Not. R. Astron. Soc. vol. 189, is. 3, pp. 465–478. DOI: https://doi.org/10.1093/mnras/189.3.46516. DULK, G. A., ERICKSON, W. C., MANNING, R. and BOUGERET, J.-L., 2001. Calibration of low-frequency radio telescopes using the galactic background radiation. Astron. Astrophys. vol. 365, no. 2, pp. 294–300. DOI: https://doi.org/10.1051/0004-6361:2000000617. DURIC, N., THEODOROU, A., SMITH, K., ZOUAOUI, G., HARRIS, M., JUNOR, W. and GAUSSIRAN, T., 2003. RFI report for the U.S. South-West [online]. [viewed 11 July 2021]. Available from ftp://gemini.haystack.edu/pub/lofar/siting_docs/SWUS_RFI.doc18. KRAUS, J. D., 1966. Radio Astronomy. NewYork: McGraw-Hill.19. WROBEL, J. M. and WALKER, R. C., 1999. Sensitivity. In: G. B. TAYLOR, C. L. CARILLI, and R. A. PERLEY, eds. Synthesis imaging in radio astronomy II, ASP Conference Series. vol. 180, pp. 171–179.20. HICKS, B. C., PARAVASTU-DALAL, N., STEWART, K. P., ERICKSON, W. C., RAY, P. S., KASSIM, N. E., BURNS, S., CLARKE, T., SCHMITT, H., CRAIG, J., HARTMAN, J. and WEILER, K. W., 2012. A Wide-Band, Active Antenna System for Long Wavelength Radio Astronomy. Publ. Astron. Soc. Pac. vol. 124, no. 920, pp. 1090–1104. DOI: https://doi.org/10.1086/66812121. KOROLEV, A. M., 2014. PHEMTs as Circuit Elements for Low-Power-Consumption Receivers/Amplifiers Operating in a Wide Temperature Range Environment. Radio Phys. Radio Astron. vol. 19, no. 2, pp. 181–185. (in Russian). DOI: https://doi.org/10.15407/rpra19.02.18122. ZAKHARENKO, V., KONOVALENKO, A., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN, S., KOLIADIN, V., KALINICHENKO, N., STANISLAVSKY, A., DOROVSKYY, V., SHEPELEV, V., BUBNOV, I., YERIN, S., MELNIK, V., KOVAL, A., SHEVCHUK, N., VASYLIEVA, I., MYLOSTNA, K., SHEVTSOVA, A., SKORYK, A., KRAVTSOV, I., VOLVACH, Y., PLAKHOV, M., VASILENKO, N., VASYLKIVSKYI, Y., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., RYABOV, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., KVASOV, G., MUKHA, D., LITVINENKO, G., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHYN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A. and GRIEßMEIER, J.-M., 2016. Digital Receivers for Low-Frequency Radio Telescopes UTR-2, URAN, GURT. J. Astron. Instrum. vol. 5, is. 4, id. 1641010. DOI: https://doi.org/10.1142/S225117171641010523. FOX, K. and TRAN, L., 2020. New Sunspots Potentially Herald Increased Solar Activity [online]. NASA: Space Weather. [viewed 13 July 2021]. Available from: https://www.nasa.gov/feature/goddard/2020/new-sunspots-herald-increased-solar-activity-cycle-sdo24. SPACEWEATHERLIVE, 2020. Real-time auroral and solar activity [online]. [viewed 13 July 2021]. Available from: https://www.spaceweatherlive.com/en/solar-activity/region/1276525. ZHELEZNYAKOV, V. V., 1970. Radio Emission of the Sun and Planets. Oxford: Permagon Press. Предмет і мета роботи: Теоретичні та експериментальні дослідження активної антени – елемента антенної решітки низькочастотного радіотелескопа для майбутньої обсерваторії на зворотному боці Місяця.Методи і методологія: Для дослідження активної антени, що складається з диполя складної форми і малошумного підсилювача, використано її математичну модель у вигляді чотириполюсника, електричні параметри якого задаються матрицею розсіяння, а шумові – коваріаційною матрицею спектральних густин шумових хвиль. Така модель дозволяє виконувати коректний аналіз співвідношення сигнал/шум на виході активної антени з урахуванням зовнішніх і внутрішніх джерел шуму. Результати моделювання співставлено з результатами експериментальних вимірювань характеристик антени. За допомогою розробленої активної антени проведено радіоастрономічні спостереження в земних умовах.Результати: Виконано числовий аналіз характеристик активної антени радіотелескопа в широкому діапазоні частот 4÷40 МГц. Розроблено два варіанти малошумних підсилювачів, призначених для роботи в складі активної антени у земних та космічних умовах. У земних умовах експериментально доведено, що обсяг завдань, які ефективно можуть розв’язувати такі радіотелескопи на дуже низьких частотах, є досить широким – від досліджень Сонця до пошуку космологічних ефектів.Висновки: Отримані в роботі результати розрахунків і натурних вимірювань показали задовільний збіг у більшій частині робочого діапазону частот. Результати цієї роботи можуть бути корисними у розробці та дослідженнях активних антен, призначених для роботи в декаметровому і гектометровому діапазонах хвиль, зокрема тих, що планується використовувати в умовах космосу.Ключові слова: активна антена, Місяць, радіоастрономічні спостереження, чутливістьСтаття надійшла до редакції 24.05.2021Radio phys. radio astron. 2021, 26(3): 197-210СПИСОК ЛІТЕРАТУРИ1. Shkuratov Y. G., Konovalenko A. A., Zakharenko V. V., Stanislavsky A. A., Bannikova E. Y., Kaydash V. G., Stankevich D. G., Korokhin V. V., Vavriv D. M., Galushko V. G., Yerin S. N., Bubnov I. N., Tokarsky P. L., Ulyanov O. M., Stepkin S. V., Lytvynenko L. N., Yatskiv Y. S., Videen G., Zarka P., and Rucker H. O. A twofold mission to the moon: Objectives and payloads. Acta Astronautica. 2019. Vol. 154. P. 214–226. DOI: 10.1016/j.actaastro.2018.03.0382. Шкуратов Ю. Г., Коноваленко О. О., Захаренко В. В., Станіславський, О. О., Баннікова О. Ю., Кайдаш В. Г., Станкевич, Д. Г., Корохін В. В., Ваврів Д. М., Галушко В. Г., Єрін С. М., Бубнов І. М., Токарський П. Л., Ульянов О. М., Степкін С. В., Литвиненко Л. М., Яцків Я. С., Вайдін Г, Зарка Ф., Рукер Х. О. Українська місія на Місяць: цілі та корисне навантаження. Космічна наука і технологія. 2018. Т. 24, № 1. С. 3–30. DOI: 10.15407/knit2018.01.0033. Jester S. and Falcke H. Science with a lunar low-frequency array: From the dark ages of the Universe to nearby exoplanets. New Astron. Rev. 2009. Vol. 53, Is. 1-2. P. 1–26. DOI: 10.1016/j.newar.2009.02.0014. Mimoun D., Wieczorek M. A., Alkalai L., Banerdt W. B., Baratoux D., Bougeret J.-L., Bouley S., Cecconi B., Falcke H., Flohrer J., Garcia R. F., Grimm R., Grott M., Gurvits L., Jaumann R., Johnson C. L., Knapmeyer M., Kobayashi N., Konovalenko A., Lawrence D., Le Feuvre M., Lognonné P., Neal C., Oberst J., Olsen N., Röttgering H., Spohn T., Vennerstrom S., Woan G., and Zarka P. Farside explorer: unique science from a mission to the farside of the Moon. Exp. Astron. 2012. Vol. 33, Is. 2-3. P. 529–585. DOI: 10.1007/s10686-011-9252-35. Zarka P., Bougeret J.-L., Briand C., Cecconi B., Falcke H., Girard J., Grießmeier J.-M., Hess S., Klein-Wolt M., Konovalenko A., Lamy L., Mimoun D., and Aminaei A. Planetary and exoplanetary low frequency radio observations from the Moon. Planet. Space Sci. 2012. Vol. 74, Is. 1. P. 156–166. DOI: 10.1016/j.pss.2012.08.0046. Stanislavsky A. A., Konovalenko A. A., Yerin S. N., Bubnov I. N., Zakharenko V. V., Shkuratov Yu. G., Tokarsky P. L., Yatskiv Ya. S., Brazhenko A. I., Frantsuzenko A. V., Dorovskyy V. V., Rucker H. O., and Zarka Ph. Solar bursts as can be observed from the lunar farside with a single antenna at very low frequencies. Astron. Nachr. 2018. Vol. 339, Is. 7-8. P. 559–570. DOI: 10.1002/asna.2018135227. Konovalenko A., Sodin L., Zakharenko V., Zarka P., Ulyanov O., Sidorchuk M., Stepkin S., Tokarsky P., Melnik V., Kalinichenko N., Stanislavsky A., Koliadin V., Shepelev V., Dorovskyy V., Ryabov V., Koval A., Bubnov I., Yerin S., Gridin A., Kulishenko V., Reznichenko A., Bortsov V., Lisachenko V., Reznik A., Kvasov G., Mukha D., Litvinenko G., Khristenko A., Shevchenko V. V., Shevchenko V. A., Belov A., Rudavin E., Vasylieva I., Miroshnichenko A., Vasilenko N., Olyak M., Mylostna K., Skoryk A., Shevtsova A., Plakhov M., Kravtsov I., Volvach Y., Lytvinenko O., Shevchuk N., Zhouk I., Bovkun V., Antonov A., Vavriv D., Vinogradov V., Kozhin R., Kravtsov A., Bulakh E., Kuzin A., Vasilyev A., Brazhenko A., Vashchishin R., Pylaev O., Koshovyy V., Lozinsky A., Ivantyshin O., Rucker H. O., Panchenko M., Fischer G., Lecacheux A., Denis L., Coffre A., Grießmeier J.-M., Tagger M., Girard J., Charrier D., Briand C., and Mann G. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron. 2016. Vol. 42, Is. 1. P. 11–48. DOI: 10.1007/s10686-016-9498-x8. Konovalenko A. A., Falkovich I. S., Kalinichenko N. N., Gridin A. A., Bubnov I. N., Lecacheux A., Rosolen C., and Rucker H. O. Thirty-Element Active Antenna Array as a Prototype of a Huge Low-Frequency Radio Telescope. Exp. Astron. 2003. Vol. 16, Is. 3. P. 149–164. DOI: 10.1007/s10686-003-0030-89. Falkovich I. S., Konovalenko A. A., Gridin A. A., Sodin L. G., Bubnov I. N., Kalinichenko N. N.,·Rashkovskii S. L., Mukha D. V., and Tokarsky P. L. Wide-band high linearity active dipole for low frequency radio astronomy. Exp. Astron. 2011. Vol. 32, Is. 2. P. 127–145. DOI: 10.1007/s10686-011-9256-z10. Stanislavsky A. A., Bubnov I. N., Konovalenko A. A., Gridin A. A., Shevchenko V. V., Stanislavsky L. A., Mukha D. V., and Koval A. A. First radio astronomy examination of the low-frequency broadband active antenna subarray. Adv. Astron. 2014. Vol. 2014. id. 517058. DOI: 10.1155/2014/51705811. Tokarsky P. L., Konovalenko A. A., and Yerin S. N. Sensitivity of an Active Antenna Array Element for the Low-Frequency Radio Telescope GURT. IEEE Trans. Antennas Propag. 2017. Vol. 65, Is. 9. P. 4636–4644. DOI: 10.1109/TAP.2017.273023812. Tokarsky P. L., Konovalenko A. A., Yerin S. N., and Bubnov I. N. An Active Antenna Subarray for the Low-Frequency Radio Telescope GURT – Part I: Design and Theoretical Model. IEEE Trans. Antennas Propag. 2019. Vol. 67, Is. 12. P. 7304–7311. DOI: 10.1109/TAP.2019.292784113. Токарский П. Л., Коноваленко А. А., Ерин С. Н., Бубнов И. Н. Чувствительность элемента активной ФАР радиотелескопа ГУРТ. Радіофізика і радіоастрономія. 2016. Т. 21. № 1. С. 48–57. DOI: 10.15407/rpra21.01.04814. Токарский П. Л., Коноваленко А. А., Ерин С. Н. Анализ параметров активной фазированной антенной решетки радиотелескопа ГУРТ. Радіофізика і радіоастрономія. 2015. Т. 20, № 2. С. 142–153. DOI: 10.15407/rpra20.02.14215. Cane H. V. Spectra of the non-thermal radio radiation from the galactic polar regions. Mon. Not. R. Astron. Soc. 1979. Vol. 189, Is. 3. P. 465–478. DOI: 10.1093/mnras/189.3.46516. Dulk G. A., Erickson W. C., Manning R., and Bougeret J.-L. Calibration of low-frequency radio telescopes using the galactic background radiation. Astron. Astrophys. 2001. Vol. 365, No. 2. P. 294–300. DOI: 10.1051/0004-6361:2000000617. Duric N., Theodorou A., Smith K., Zouaoui G., Harris M., Junor W., and Gaussiran T. RFI report for the U.S. South-West. 2003. URL: ftp://gemini.haystack.edu/pub/lofar/siting_docs/SWUS_RFI.doc (дата звернення: 11.07.2021).18. Краус Дж. Д. Радиоастрономия. Пер. с англ. под ред. В. В. Железнякова. Москва: Сов. радио, 1973. 456 с.19. Wrobel J. M., and Walker R. C. Sensitivity. In: G. B. Taylor, C. L. Carilli, and R. A. Perley, eds. Synthesis imaging in radio astronomy II, ASP Conference Series. 1999. Vol. 180. P. 171–179.20. Hicks B. C., Paravastu-Dalal N., Stewart K. P., Erickson W. C., Ray P. S., Kassim N. E., Burns S., Clarke T., Schmitt H., Craig J., Hartman J., and Weiler K. W. A Wide-Band, Active Antenna System for Long Wavelength Radio Astronomy. Publ. Astron. Soc. Pac. 2012. Vol. 124, No. 920. P. 1090–1104. DOI: 10.1086/66812121. Королев А. М. Гетероструктурные полевые транзисторы как активные элементы приемных устройств для особо жестких условий эксплуатации. Радіофізика і радіоастрономія. 2014. Т. 19, № 2. С. 181–185. DOI: 10.15407/rpra19.02.18122. Zakharenko V., Konovalenko A., Zarka P., Ulyanov O., Sidorchuk M., Stepkin S., Koliadin V., Kalinichenko N., Stanislavsky A., Dorovskyy V., Shepelev V., Bubnov I., Yerin S., Melnik V., Koval A., Shevchuk N., Vasylieva I., Mylostna K., Shevtsova A., Skoryk A., Kravtsov I., Volvach Y., Plakhov M., Vasilenko N., Vasylkivskyi Y., Vavriv D., Vinogradov V., Kozhin R., Kravtsov A., Bulakh E., Kuzin A., Vasilyev A., Ryabov V., Reznichenko A., Bortsov V., Lisachenko V., Kvasov G., Mukha D., Litvinenko G., Brazhenko A., Vashchishin R., Pylaev O., Koshovyy V., Lozinsky A., Ivantyshyn O., Rucker H. O., Panchenko M., Fischer G., Lecacheux A., Denis L., Coffre A., and Grießmeier J.-M. Digital Receivers for Low-Frequency Radio Telescopes UTR-2, URAN, GURT. J. Astron. Instrum. 2016. Vol. 5, Is. 4. id. 1641010. DOI: 10.1142/S225117171641010523. Fox K. and Tran L. New Sunspots Potentially Herald Increased Solar Activity. NASA: Space Weather. 2020. URL: https://www.nasa.gov/feature/goddard/2020/new-sunspots-herald-increased-solar-activity-cycle-sdo (дата звернення: 13.07.2021).24. Real-time auroral and solar activity. SpaceWeatherLive. 2020. URL: https://www.spaceweatherlive.com/en/solar-activity/region/12765 (дата звернення: 13.07.2021).25. Zheleznyakov V. V. Radio Emission of the Sun and Planets. Oxford: Permagon Press, 1970. 712 p. Видавничий дім «Академперіодика» 2021-09-15 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1359 10.15407/rpra26.03.197 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 26, No 3 (2021); 197 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 26, No 3 (2021); 197 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 26, No 3 (2021); 197 2415-7007 1027-9636 10.15407/rpra26.03 uk http://rpra-journal.org.ua/index.php/ra/article/view/1359/pdf Copyright (c) 2021 RADIO PHYSICS AND RADIO ASTRONOMY