INTENSITY CONTROLLED, NONSPECULAR RESONANT BACK REFLECTION OF LIGHT

Subject and Purpose. Theoretical demonstration of controllable features of a non-conventional resonant back refl ection of light, realizable with the aid of a structured silicon-on-metal covering.Methods and Methodology. The investigation has been performed through a full-wave numerical simulation i...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автори: Prosvirnin, S. L., Khardikov, V. V., Yachin, V. V., Plakhtii, V. A., Sydorchuk, N. V.
Формат: Стаття
Мова:English
Опубліковано: Видавничий дім «Академперіодика» 2023
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1392
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
id oai:ri.kharkov.ua:article-1392
record_format ojs
institution Radio physics and radio astronomy
baseUrl_str
datestamp_date 2023-06-20T14:17:41Z
collection OJS
language English
topic
spellingShingle
Prosvirnin, S. L.
Khardikov, V. V.
Yachin, V. V.
Plakhtii, V. A.
Sydorchuk, N. V.
INTENSITY CONTROLLED, NONSPECULAR RESONANT BACK REFLECTION OF LIGHT
topic_facet

format Article
author Prosvirnin, S. L.
Khardikov, V. V.
Yachin, V. V.
Plakhtii, V. A.
Sydorchuk, N. V.
author_facet Prosvirnin, S. L.
Khardikov, V. V.
Yachin, V. V.
Plakhtii, V. A.
Sydorchuk, N. V.
author_sort Prosvirnin, S. L.
title INTENSITY CONTROLLED, NONSPECULAR RESONANT BACK REFLECTION OF LIGHT
title_short INTENSITY CONTROLLED, NONSPECULAR RESONANT BACK REFLECTION OF LIGHT
title_full INTENSITY CONTROLLED, NONSPECULAR RESONANT BACK REFLECTION OF LIGHT
title_fullStr INTENSITY CONTROLLED, NONSPECULAR RESONANT BACK REFLECTION OF LIGHT
title_full_unstemmed INTENSITY CONTROLLED, NONSPECULAR RESONANT BACK REFLECTION OF LIGHT
title_sort intensity controlled, nonspecular resonant back reflection of light
title_alt ЗВОРОТНЕ РЕЗОНАНСНЕ НЕДЗЕРКАЛЬНЕ ВІДБИТТЯ СВІТЛА, КЕРОВАНЕ ЙОГО ІНТЕНСИВНІСТЮ
description Subject and Purpose. Theoretical demonstration of controllable features of a non-conventional resonant back refl ection of light, realizable with the aid of a structured silicon-on-metal covering.Methods and Methodology. The investigation has been performed through a full-wave numerical simulation in a finite-element technique.Results. The nonlinear optical properties of a planar structure, involving a set of silicon disks disposed periodically on a silver substrate, have been studied in the Littrow scenario of wave refl ection. The structure manifests a bistable resonant reflectivity property. The magnitudes of both specular and back reflection ratios can be controlled by means of varying the incident light intensity.Conclusions. An array of identical silicon disks, placed in a periodic order on a silver substrate, can be employed as an efficiently excitable and tunable nonlinear resonant reflective structure implementing Littrow’s non-specular diffraction scenario. As has been found, the effect of nonlinear response from the silicon disks can be used for implementing a regimen of bistable back refl ection, controllable by means of varying the incident wave’s intensity. The nonlinear tunability of the silicon-on-silver structure does promise extensions of the operation area of classical metamaterials of sub-wavelength scale sizes as it offers new applications for the effects of light-matter interaction.Keywords: metasurface, non-specular reflection, Littrow’s scenario, nonlinear tunability, bistability, numerical simulationManuscript submitted 09.05.2022Radio phys. radio astron. 2022, 27(3):181-187REFERENCES1. Enoch, J.M., 2006. History of Mirrors Dating Back 8000 Years. Optom. Vis. Sci., 83(10), pp. 775—781. DOI: 10.1097/01.opx.0000237925.65901.c02. Glybovski, S.B., Tretyakov, S.A., Belov, P.A., Kivshar, Y.S. and Simovski, C.R., 2016. Metasurfaces: From microwaves to visible. Phys. Rep., 634, pp. 1—72. DOI:https://doi.org/10.1016/j.physrep.2016.04.0043. Wang, B.-X., Zhai, X., Wang, G.-Z., Huang, W.-Q. and Wang, L.-L., 2015. A novel dual-band terahertz metamaterial absorber for a sensor application. J. Appl. Phys., 117(1), p. 014504. DOI:https://doi.org/10.1063/1.49052614. Yahiaoui, R., Tan, S., Cong, L., Singh, R., Yan, F. and Zhang, W., 2015. Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber. J. Appl. Phys., 118(8), p. 083103. DOI:https://doi.org/10.1063/1.49294495. Sydorchuk, N. and Prosvirnin, S., 2017. Analysis of terahertz wave reflection by an array of double dielectric elements placed on a reflective substrate. In: XXIInd Int. Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Th eory (DIPED): proc. Dnipro, Ukraine, 25—28 Sept. 2017, pp. 58—63. DOI:https://doi.org/10.1109/DIPED.2017.81005586. Lee, Y., Kim, S.-J., Park, H. and Lee, B., 2017. Metamaterials and Metasurfaces for Sensor Applications. Sensors, 17(8), pp. 1708—1726. DOI:https://doi.org/10.3390/s170817267. Collin, S., 2014. Nanostructure arrays in free-space: optical properties and applications. Rep. Prog. Phys., 77(12), p. 126402. DOI:https://doi.org/10.1088/0034-4885/77/12/1264028. Zhu, L., Kapraun, J., Ferrara, J. and Chang-Hasnain, C.J., 2015. Flexible photonic metastructures for tunable coloration. Optica, 2(3), pp. 255—258. DOI:https://doi.org/10.1364/OPTICA.2.0002559. Esfandyarpour, M., Garnett, E.C., Cui, Y., Mcgehee, M.D. and Brongersma, M.L., 2014. Metamaterial mirrors in optoelectronic devices. Nat. Nanotechnol., 9(7), pp. 542—547. DOI:https://doi.org/10.1038/nnano.2014.11710. Badloe, T., Mun, J. and Rho, J., 2017. Metasurfaces-Based Absorption and Reflection Control: Perfect Absorbers and Reflectors. J. Nanomater., 2017(2), pp. 1—18. DOI:https://doi.org/10.1155/2017/236104211. Eggleston, M.S., Messer, K., Zhang, L., Yablonovitch, E. and Wu, M.C., 2015. Optical antenna enhanced spontaneous emission. Proc. Natl. Acad. Sci. USA, 112(6), pp. 1704—1709. DOI:https://doi.org/10.1073/pnas.142329411212. Li, D.C., Boone, F., Bozzi, M., Perregrini, L. and Wu, K., 2008. Concept of Virtual Electric/Magnetic Walls and its Realization with Artificial Magnetic Conductor Technique. IEEE Microwave Wireless Compon. Lett., 18(11), pp. 743—745. DOI:https://doi.org/10.1109/LMWC.2008.200522913. Jahani, S. and Jacob, Z., 2016. All-dielectric metamaterials. Nat. Nanotechnol., 11(1), pp. 23—36. DOI:https://doi.org/10.1038/nnano.2015.30414. Shestopalov, V.P., Litvinenko, L.N., Masalov, S.A. and Sologub, V.G., 1973. Diffraction of waves by gratings. Kharkiv, Ukraine: Kharkov State Univ. Publ. (in Russian).15. Jull, E. and Ebbeson, G., 1977. The reduction of interference from large reflecting surfaces. IEEE Trans. Antennas Propag., 25(4), pp. 565—570. DOI:https://doi.org/10.1109/TAP.1977.114164016. Masalov, S.A. and Sirenko, Yu.K., 1980. Excitation of reflecting lattices by a plane wave in the autocollimation mode. Radiophys. Quantum Electron., 23(4), pp. 332—338. DOI: https://doi.org/10.1007/BF0105764217. Hard, T.M., 1970. Laser Wavelength Selection and Output Coupling by a Grating. Appl. Opt., 9(8), p. 1825—1830. DOI:https://doi.org/10.1364/AO.9.00182518. Lotem, H., 1994. Littrow-mounted diffraction grating cavity. Appl. Opt., 33(6), pp. 930—934. DOI:https://doi.org/10.1364/AO.33.00093019. Gribovsky, A.V. and Yeliseyev, O.A., 2014. Nonspecular reflection of Gaussian wave beams on a two-dimensional periodic array with shorted waveguides of rectangular cross-section. J. Opt., 16(3), p. 035701. DOI:https://doi.org/10.1088/2040-8978/16/3/03570120. Litchinitser, N.M. and Sun, J., 2015. Optical meta-atoms: Going nonlinear. Science, 350(6264), pp. 1033—1034. DOI:https://doi.org/10.1126/science.aad721221. Boyd, R.W., 2019. Nonlinear optics. Amsterdam: Academic Press.22. Prosvirnin, S.L., Khardikov, V.V., Domina, K.L., Maslovskiy, O.A., Kochetova, L.A. and Yachin, V.V., 2011. Non-specular reflection by a planar resonant metasurface. Preprint. http://arxiv.org/abs/2103.01010.23. Van de Groep, J. and Polman, A., 2013. Designing dielectric resonators on substrates: Combining magnetic and electric resonances. Opt. Express, 21(22), pp. 26285—26302. DOI:https://doi.org/10.1364/OE.21.02628524. Ene-Dobre, M., Banciu, M.G., Nedelcu, L., Stoica, G., Busuioc, C. and Alexandru, H.V., 2011. Microwave antennas based on Ba1–xPbxNd2Ti5O14. J. Optoelectron. Adv. Mater., 13(10), pp. 1298—1304.25. Dinu, M., Quochi, F. and Garcia, H., 2003. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett., 82(18), pp. 2954—2956. DOI:https://doi.org/10.1063/1.157166526. Gholami, F., Zlatanovic, S., Simic, A., Liu, L., Borlaug, D., Alic, N., Nezhad, M.P., Fainman, Y. and Radic, S., 2011. Third-order nonlinearity in silicon beyond 2350 nm. Appl. Phys. Lett., 99(8), p. 081102. DOI:https://doi.org/10.1063/1.363013027. Wang, T., Venkatram, N., Gosciniak, J., Cui, Y., Qian, G., Ji, W. and Tan, D.T.H., 2013. Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths. Opt. Express, 21(26), pp. 32192—32198. DOI:https://doi.org/10.1364/OE.21.03219228. Krasnok, A., Tymchenko, M. and Al`u, A., 2018. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today, 21(1), pp. 8—21. DOI:https://doi.org/10.1016/j.mattod.2017.06.00729. Werner, W.S.M., Glantschnig, K. and Ambrosch-Draxl, C., 2009. Optical Constants and Inelastic Electron-Scattering Data for 17 Elemental Metals. J. Phys. Chem. Ref. Data, 38(4), pp. 1013—1092. DOI: https://doi.org/10.1063/1.324376230. Prosvirnin, S., Domina, K., Khardikov, V. and Yachin, V., 2021. Non-specular reflection of light controlled by light. In: 2021 IEEE 26th Int. Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED): proc. Tbilisi, Georgia, 08—10 Sept. 2021. DOI:https://doi.org/10.1109/DIPED53165.2021.9552327
publisher Видавничий дім «Академперіодика»
publishDate 2023
url http://rpra-journal.org.ua/index.php/ra/article/view/1392
work_keys_str_mv AT prosvirninsl intensitycontrollednonspecularresonantbackreflectionoflight
AT khardikovvv intensitycontrollednonspecularresonantbackreflectionoflight
AT yachinvv intensitycontrollednonspecularresonantbackreflectionoflight
AT plakhtiiva intensitycontrollednonspecularresonantbackreflectionoflight
AT sydorchuknv intensitycontrollednonspecularresonantbackreflectionoflight
AT prosvirninsl zvorotnerezonansnenedzerkalʹnevídbittâsvítlakerovanejogoíntensivnístû
AT khardikovvv zvorotnerezonansnenedzerkalʹnevídbittâsvítlakerovanejogoíntensivnístû
AT yachinvv zvorotnerezonansnenedzerkalʹnevídbittâsvítlakerovanejogoíntensivnístû
AT plakhtiiva zvorotnerezonansnenedzerkalʹnevídbittâsvítlakerovanejogoíntensivnístû
AT sydorchuknv zvorotnerezonansnenedzerkalʹnevídbittâsvítlakerovanejogoíntensivnístû
first_indexed 2025-07-17T11:24:32Z
last_indexed 2025-07-17T11:24:32Z
_version_ 1838500106104471552
spelling oai:ri.kharkov.ua:article-13922023-06-20T14:17:41Z INTENSITY CONTROLLED, NONSPECULAR RESONANT BACK REFLECTION OF LIGHT ЗВОРОТНЕ РЕЗОНАНСНЕ НЕДЗЕРКАЛЬНЕ ВІДБИТТЯ СВІТЛА, КЕРОВАНЕ ЙОГО ІНТЕНСИВНІСТЮ Prosvirnin, S. L. Khardikov, V. V. Yachin, V. V. Plakhtii, V. A. Sydorchuk, N. V. Subject and Purpose. Theoretical demonstration of controllable features of a non-conventional resonant back refl ection of light, realizable with the aid of a structured silicon-on-metal covering.Methods and Methodology. The investigation has been performed through a full-wave numerical simulation in a finite-element technique.Results. The nonlinear optical properties of a planar structure, involving a set of silicon disks disposed periodically on a silver substrate, have been studied in the Littrow scenario of wave refl ection. The structure manifests a bistable resonant reflectivity property. The magnitudes of both specular and back reflection ratios can be controlled by means of varying the incident light intensity.Conclusions. An array of identical silicon disks, placed in a periodic order on a silver substrate, can be employed as an efficiently excitable and tunable nonlinear resonant reflective structure implementing Littrow’s non-specular diffraction scenario. As has been found, the effect of nonlinear response from the silicon disks can be used for implementing a regimen of bistable back refl ection, controllable by means of varying the incident wave’s intensity. The nonlinear tunability of the silicon-on-silver structure does promise extensions of the operation area of classical metamaterials of sub-wavelength scale sizes as it offers new applications for the effects of light-matter interaction.Keywords: metasurface, non-specular reflection, Littrow’s scenario, nonlinear tunability, bistability, numerical simulationManuscript submitted 09.05.2022Radio phys. radio astron. 2022, 27(3):181-187REFERENCES1. Enoch, J.M., 2006. History of Mirrors Dating Back 8000 Years. Optom. Vis. Sci., 83(10), pp. 775—781. DOI: 10.1097/01.opx.0000237925.65901.c02. Glybovski, S.B., Tretyakov, S.A., Belov, P.A., Kivshar, Y.S. and Simovski, C.R., 2016. Metasurfaces: From microwaves to visible. Phys. Rep., 634, pp. 1—72. DOI:https://doi.org/10.1016/j.physrep.2016.04.0043. Wang, B.-X., Zhai, X., Wang, G.-Z., Huang, W.-Q. and Wang, L.-L., 2015. A novel dual-band terahertz metamaterial absorber for a sensor application. J. Appl. Phys., 117(1), p. 014504. DOI:https://doi.org/10.1063/1.49052614. Yahiaoui, R., Tan, S., Cong, L., Singh, R., Yan, F. and Zhang, W., 2015. Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber. J. Appl. Phys., 118(8), p. 083103. DOI:https://doi.org/10.1063/1.49294495. Sydorchuk, N. and Prosvirnin, S., 2017. Analysis of terahertz wave reflection by an array of double dielectric elements placed on a reflective substrate. In: XXIInd Int. Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Th eory (DIPED): proc. Dnipro, Ukraine, 25—28 Sept. 2017, pp. 58—63. DOI:https://doi.org/10.1109/DIPED.2017.81005586. Lee, Y., Kim, S.-J., Park, H. and Lee, B., 2017. Metamaterials and Metasurfaces for Sensor Applications. Sensors, 17(8), pp. 1708—1726. DOI:https://doi.org/10.3390/s170817267. Collin, S., 2014. Nanostructure arrays in free-space: optical properties and applications. Rep. Prog. Phys., 77(12), p. 126402. DOI:https://doi.org/10.1088/0034-4885/77/12/1264028. Zhu, L., Kapraun, J., Ferrara, J. and Chang-Hasnain, C.J., 2015. Flexible photonic metastructures for tunable coloration. Optica, 2(3), pp. 255—258. DOI:https://doi.org/10.1364/OPTICA.2.0002559. Esfandyarpour, M., Garnett, E.C., Cui, Y., Mcgehee, M.D. and Brongersma, M.L., 2014. Metamaterial mirrors in optoelectronic devices. Nat. Nanotechnol., 9(7), pp. 542—547. DOI:https://doi.org/10.1038/nnano.2014.11710. Badloe, T., Mun, J. and Rho, J., 2017. Metasurfaces-Based Absorption and Reflection Control: Perfect Absorbers and Reflectors. J. Nanomater., 2017(2), pp. 1—18. DOI:https://doi.org/10.1155/2017/236104211. Eggleston, M.S., Messer, K., Zhang, L., Yablonovitch, E. and Wu, M.C., 2015. Optical antenna enhanced spontaneous emission. Proc. Natl. Acad. Sci. USA, 112(6), pp. 1704—1709. DOI:https://doi.org/10.1073/pnas.142329411212. Li, D.C., Boone, F., Bozzi, M., Perregrini, L. and Wu, K., 2008. Concept of Virtual Electric/Magnetic Walls and its Realization with Artificial Magnetic Conductor Technique. IEEE Microwave Wireless Compon. Lett., 18(11), pp. 743—745. DOI:https://doi.org/10.1109/LMWC.2008.200522913. Jahani, S. and Jacob, Z., 2016. All-dielectric metamaterials. Nat. Nanotechnol., 11(1), pp. 23—36. DOI:https://doi.org/10.1038/nnano.2015.30414. Shestopalov, V.P., Litvinenko, L.N., Masalov, S.A. and Sologub, V.G., 1973. Diffraction of waves by gratings. Kharkiv, Ukraine: Kharkov State Univ. Publ. (in Russian).15. Jull, E. and Ebbeson, G., 1977. The reduction of interference from large reflecting surfaces. IEEE Trans. Antennas Propag., 25(4), pp. 565—570. DOI:https://doi.org/10.1109/TAP.1977.114164016. Masalov, S.A. and Sirenko, Yu.K., 1980. Excitation of reflecting lattices by a plane wave in the autocollimation mode. Radiophys. Quantum Electron., 23(4), pp. 332—338. DOI: https://doi.org/10.1007/BF0105764217. Hard, T.M., 1970. Laser Wavelength Selection and Output Coupling by a Grating. Appl. Opt., 9(8), p. 1825—1830. DOI:https://doi.org/10.1364/AO.9.00182518. Lotem, H., 1994. Littrow-mounted diffraction grating cavity. Appl. Opt., 33(6), pp. 930—934. DOI:https://doi.org/10.1364/AO.33.00093019. Gribovsky, A.V. and Yeliseyev, O.A., 2014. Nonspecular reflection of Gaussian wave beams on a two-dimensional periodic array with shorted waveguides of rectangular cross-section. J. Opt., 16(3), p. 035701. DOI:https://doi.org/10.1088/2040-8978/16/3/03570120. Litchinitser, N.M. and Sun, J., 2015. Optical meta-atoms: Going nonlinear. Science, 350(6264), pp. 1033—1034. DOI:https://doi.org/10.1126/science.aad721221. Boyd, R.W., 2019. Nonlinear optics. Amsterdam: Academic Press.22. Prosvirnin, S.L., Khardikov, V.V., Domina, K.L., Maslovskiy, O.A., Kochetova, L.A. and Yachin, V.V., 2011. Non-specular reflection by a planar resonant metasurface. Preprint. http://arxiv.org/abs/2103.01010.23. Van de Groep, J. and Polman, A., 2013. Designing dielectric resonators on substrates: Combining magnetic and electric resonances. Opt. Express, 21(22), pp. 26285—26302. DOI:https://doi.org/10.1364/OE.21.02628524. Ene-Dobre, M., Banciu, M.G., Nedelcu, L., Stoica, G., Busuioc, C. and Alexandru, H.V., 2011. Microwave antennas based on Ba1–xPbxNd2Ti5O14. J. Optoelectron. Adv. Mater., 13(10), pp. 1298—1304.25. Dinu, M., Quochi, F. and Garcia, H., 2003. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett., 82(18), pp. 2954—2956. DOI:https://doi.org/10.1063/1.157166526. Gholami, F., Zlatanovic, S., Simic, A., Liu, L., Borlaug, D., Alic, N., Nezhad, M.P., Fainman, Y. and Radic, S., 2011. Third-order nonlinearity in silicon beyond 2350 nm. Appl. Phys. Lett., 99(8), p. 081102. DOI:https://doi.org/10.1063/1.363013027. Wang, T., Venkatram, N., Gosciniak, J., Cui, Y., Qian, G., Ji, W. and Tan, D.T.H., 2013. Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths. Opt. Express, 21(26), pp. 32192—32198. DOI:https://doi.org/10.1364/OE.21.03219228. Krasnok, A., Tymchenko, M. and Al`u, A., 2018. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today, 21(1), pp. 8—21. DOI:https://doi.org/10.1016/j.mattod.2017.06.00729. Werner, W.S.M., Glantschnig, K. and Ambrosch-Draxl, C., 2009. Optical Constants and Inelastic Electron-Scattering Data for 17 Elemental Metals. J. Phys. Chem. Ref. Data, 38(4), pp. 1013—1092. DOI: https://doi.org/10.1063/1.324376230. Prosvirnin, S., Domina, K., Khardikov, V. and Yachin, V., 2021. Non-specular reflection of light controlled by light. In: 2021 IEEE 26th Int. Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED): proc. Tbilisi, Georgia, 08—10 Sept. 2021. DOI:https://doi.org/10.1109/DIPED53165.2021.9552327 Предмет і мета роботи. Теоретична демонстрація контрольованих особливостей незвичайного резонансного режиму зворотного відбиття світла, що може бути реалізованим за допомогою структурованого покриття з кремнію на металі.Методи і методологія. Дослідження виконано методом скінченних елементів та повнохвильовим чисельним комп’ютерним моделюванням.Результати. Нелінійні оптичні характеристики плоскої структури, що складається з кремнієвих дисків, періодично розміщених на срібній підкладці, було досліджено за сценарієм відбиття Літтроу. Структура проявляє бістабільну резонансну відбивну здатність. Значення коефіцієнтів як дзеркального, так і зворотного відбиття можна налаштувати, змінюючи інтенсивність світла, що падає.Висновок. Решітка з ідентичних кремнієвих дисків, періодично розміщених на срібній підкладці, може бути використана як ефективно збуджувана й регульована резонансна нелінійна відбиваюча структура у сценарії недзеркальної дифракції Літтроу. Виявлено, що нелінійний відгук кремнієвих дисків може бути використаний для реалізації бістабільного зворотного відбиття, котрим можна керувати шляхом зміни інтенсивності хвилі, що падає. Можливість нелінійного налаштування структури «кремній на сріблі» є перспективою для розширення робочої області класичних субхвильових метаматеріалів, змогу застосування ефектів взаємодії світло-матерія.Ключові слова: метаповерхня, недзеркальне відбиття, сценарій Літтроу, нелінійна перестроюваність, бістабільність, чисельне моделюванняСтаття надійшла до редакції 09.05.2022Radio phys. radio astron. 2022, 27(3):181-187БІБЛІОГРАФІЧНИЙ СПИСОК1. Enoch, J.M., 2006. History of Mirrors Dating Back 8000 Years. Optom. Vis. Sci., 83(10), pp. 775—781. DOI: 10.1097/01.opx.0000237925.65901.c02. Glybovski, S.B., Tretyakov, S.A., Belov, P.A., Kivshar, Y.S. and Simovski, C.R., 2016. Metasurfaces: From microwaves to visible. Phys. Rep., 634, pp. 1—72. DOI:https://doi.org/10.1016/j.physrep.2016.04.0043. Wang, B.-X., Zhai, X., Wang, G.-Z., Huang, W.-Q. and Wang, L.-L., 2015. A novel dual-band terahertz metamaterial absorber for a sensor application. J. Appl. Phys., 117(1), p. 014504. DOI:https://doi.org/10.1063/1.49052614. Yahiaoui, R., Tan, S., Cong, L., Singh, R., Yan, F. and Zhang, W., 2015. Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber. J. Appl. Phys., 118(8), p. 083103. DOI:https://doi.org/10.1063/1.49294495. Sydorchuk, N. and Prosvirnin, S., 2017. Analysis of terahertz wave reflection by an array of double dielectric elements placed on a reflective substrate. In: XXIInd Int. Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Th eory (DIPED): proc. Dnipro, Ukraine, 25—28 Sept. 2017, pp. 58—63. DOI:https://doi.org/10.1109/DIPED.2017.81005586. Lee, Y., Kim, S.-J., Park, H. and Lee, B., 2017. Metamaterials and Metasurfaces for Sensor Applications. Sensors, 17(8), pp. 1708—1726. DOI:https://doi.org/10.3390/s170817267. Collin, S., 2014. Nanostructure arrays in free-space: optical properties and applications. Rep. Prog. Phys., 77(12), p. 126402. DOI:https://doi.org/10.1088/0034-4885/77/12/1264028. Zhu, L., Kapraun, J., Ferrara, J. and Chang-Hasnain, C.J., 2015. Flexible photonic metastructures for tunable coloration. Optica, 2(3), pp. 255—258. DOI:https://doi.org/10.1364/OPTICA.2.0002559. Esfandyarpour, M., Garnett, E.C., Cui, Y., Mcgehee, M.D. and Brongersma, M.L., 2014. Metamaterial mirrors in optoelectronic devices. Nat. Nanotechnol., 9(7), pp. 542—547. DOI:https://doi.org/10.1038/nnano.2014.11710. Badloe, T., Mun, J. and Rho, J., 2017. Metasurfaces-Based Absorption and Reflection Control: Perfect Absorbers and Reflectors. J. Nanomater., 2017(2), pp. 1—18. DOI:https://doi.org/10.1155/2017/236104211. Eggleston, M.S., Messer, K., Zhang, L., Yablonovitch, E. and Wu, M.C., 2015. Optical antenna enhanced spontaneous emission. Proc. Natl. Acad. Sci. USA, 112(6), pp. 1704—1709. DOI:https://doi.org/10.1073/pnas.142329411212. Li, D.C., Boone, F., Bozzi, M., Perregrini, L. and Wu, K., 2008. Concept of Virtual Electric/Magnetic Walls and its Realization with Artificial Magnetic Conductor Technique. IEEE Microwave Wireless Compon. Lett., 18(11), pp. 743—745. DOI:https://doi.org/10.1109/LMWC.2008.200522913. Jahani, S. and Jacob, Z., 2016. All-dielectric metamaterials. Nat. Nanotechnol., 11(1), pp. 23—36. DOI:https://doi.org/10.1038/nnano.2015.30414. Shestopalov, V.P., Litvinenko, L.N., Masalov, S.A. and Sologub, V.G., 1973. Diffraction of waves by gratings. Kharkiv, Ukraine: Kharkov State Univ. Publ. (in Russian).15. Jull, E. and Ebbeson, G., 1977. The reduction of interference from large reflecting surfaces. IEEE Trans. Antennas Propag., 25(4), pp. 565—570. DOI:https://doi.org/10.1109/TAP.1977.114164016. Masalov, S.A. and Sirenko, Yu.K., 1980. Excitation of reflecting lattices by a plane wave in the autocollimation mode. Radiophys. Quantum Electron., 23(4), pp. 332—338. DOI: https://doi.org/10.1007/BF0105764217. Hard, T.M., 1970. Laser Wavelength Selection and Output Coupling by a Grating. Appl. Opt., 9(8), p. 1825—1830. DOI:https://doi.org/10.1364/AO.9.00182518. Lotem, H., 1994. Littrow-mounted diffraction grating cavity. Appl. Opt., 33(6), pp. 930—934. DOI:https://doi.org/10.1364/AO.33.00093019. Gribovsky, A.V. and Yeliseyev, O.A., 2014. Nonspecular reflection of Gaussian wave beams on a two-dimensional periodic array with shorted waveguides of rectangular cross-section. J. Opt., 16(3), p. 035701. DOI:https://doi.org/10.1088/2040-8978/16/3/03570120. Litchinitser, N.M. and Sun, J., 2015. Optical meta-atoms: Going nonlinear. Science, 350(6264), pp. 1033—1034. DOI:https://doi.org/10.1126/science.aad721221. Boyd, R.W., 2019. Nonlinear optics. Amsterdam: Academic Press.22. Prosvirnin, S.L., Khardikov, V.V., Domina, K.L., Maslovskiy, O.A., Kochetova, L.A. and Yachin, V.V., 2011. Non-specular reflection by a planar resonant metasurface. Preprint. http://arxiv.org/abs/2103.01010.23. Van de Groep, J. and Polman, A., 2013. Designing dielectric resonators on substrates: Combining magnetic and electric resonances. Opt. Express, 21(22), pp. 26285—26302. DOI:https://doi.org/10.1364/OE.21.02628524. Ene-Dobre, M., Banciu, M.G., Nedelcu, L., Stoica, G., Busuioc, C. and Alexandru, H.V., 2011. Microwave antennas based on Ba1–xPbxNd2Ti5O14. J. Optoelectron. Adv. Mater., 13(10), pp. 1298—1304.25. Dinu, M., Quochi, F. and Garcia, H., 2003. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett., 82(18), pp. 2954—2956. DOI:https://doi.org/10.1063/1.157166526. Gholami, F., Zlatanovic, S., Simic, A., Liu, L., Borlaug, D., Alic, N., Nezhad, M.P., Fainman, Y. and Radic, S., 2011. Third-order nonlinearity in silicon beyond 2350 nm. Appl. Phys. Lett., 99(8), p. 081102. DOI:https://doi.org/10.1063/1.363013027. Wang, T., Venkatram, N., Gosciniak, J., Cui, Y., Qian, G., Ji, W. and Tan, D.T.H., 2013. Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths. Opt. Express, 21(26), pp. 32192—32198. DOI:https://doi.org/10.1364/OE.21.03219228. Krasnok, A., Tymchenko, M. and Al`u, A., 2018. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today, 21(1), pp. 8—21. DOI:https://doi.org/10.1016/j.mattod.2017.06.00729. Werner, W.S.M., Glantschnig, K. and Ambrosch-Draxl, C., 2009. Optical Constants and Inelastic Electron-Scattering Data for 17 Elemental Metals. J. Phys. Chem. Ref. Data, 38(4), pp. 1013—1092. DOI: https://doi.org/10.1063/1.324376230. Prosvirnin, S., Domina, K., Khardikov, V. and Yachin, V., 2021. Non-specular reflection of light controlled by light. In: 2021 IEEE 26th Int. Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED): proc. Tbilisi, Georgia, 08—10 Sept. 2021. DOI:https://doi.org/10.1109/DIPED53165.2021.9552327  Видавничий дім «Академперіодика» 2023-06-15 Article Article application/pdf http://rpra-journal.org.ua/index.php/ra/article/view/1392 10.15407/rpra27.03.181 РАДИОФИЗИКА И РАДИОАСТРОНОМИЯ; Vol 27, No 3 (2022); 181 RADIO PHYSICS AND RADIO ASTRONOMY; Vol 27, No 3 (2022); 181 РАДІОФІЗИКА І РАДІОАСТРОНОМІЯ; Vol 27, No 3 (2022); 181 2415-7007 1027-9636 10.15407/rpra27.03 en http://rpra-journal.org.ua/index.php/ra/article/view/1392/pdf Copyright (c) 2022 RADIO PHYSICS AND RADIO ASTRONOMY