The groups whose cyclic subgroups are either ascendant or almost self-normalizing

Saved in:
Bibliographic Details
Date:2016
Main Authors: L. A. Kurdachenko, A. A. Pypka, N. N. Semko
Format: Article
Language:English
Published: 2016
Series:Algebra and discrete mathematics
Online Access:http://jnas.nbuv.gov.ua/article/UJRN-0000739486
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Library portal of National Academy of Sciences of Ukraine | LibNAS

Institution

Library portal of National Academy of Sciences of Ukraine | LibNAS
id open-sciencenbuvgovua-52659
record_format dspace
spelling open-sciencenbuvgovua-526592024-02-29T13:07:53Z The groups whose cyclic subgroups are either ascendant or almost self-normalizing L. A. Kurdachenko A. A. Pypka N. N. Semko 1726-3255 2016 en Algebra and discrete mathematics http://jnas.nbuv.gov.ua/article/UJRN-0000739486 Article
institution Library portal of National Academy of Sciences of Ukraine | LibNAS
collection Open-Science
language English
series Algebra and discrete mathematics
spellingShingle Algebra and discrete mathematics
L. A. Kurdachenko
A. A. Pypka
N. N. Semko
The groups whose cyclic subgroups are either ascendant or almost self-normalizing
format Article
author L. A. Kurdachenko
A. A. Pypka
N. N. Semko
author_facet L. A. Kurdachenko
A. A. Pypka
N. N. Semko
author_sort L. A. Kurdachenko
title The groups whose cyclic subgroups are either ascendant or almost self-normalizing
title_short The groups whose cyclic subgroups are either ascendant or almost self-normalizing
title_full The groups whose cyclic subgroups are either ascendant or almost self-normalizing
title_fullStr The groups whose cyclic subgroups are either ascendant or almost self-normalizing
title_full_unstemmed The groups whose cyclic subgroups are either ascendant or almost self-normalizing
title_sort groups whose cyclic subgroups are either ascendant or almost self-normalizing
publishDate 2016
url http://jnas.nbuv.gov.ua/article/UJRN-0000739486
work_keys_str_mv AT lakurdachenko thegroupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
AT aapypka thegroupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
AT nnsemko thegroupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
AT lakurdachenko groupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
AT aapypka groupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
AT nnsemko groupswhosecyclicsubgroupsareeitherascendantoralmostselfnormalizing
first_indexed 2025-07-17T23:08:47Z
last_indexed 2025-07-17T23:08:47Z
_version_ 1837937771625316352