Comparative analysis of height-based vegetation segmentation methods: evaluating efficiency and accuracy

Height-based vector vegetation segmentation is one of the critical aspects of spatial analysis. This segmented data is used in radio propagation modeling, environmental monitoring, and vegetation mapping. Many studies on vector vegetation segmentation focus on delineating individual tree crowns, all...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2024
Автори: Tsaryniuk, O.V., Glybovets, A.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут програмних систем НАН України 2024
Теми:
Онлайн доступ:https://pp.isofts.kiev.ua/index.php/ojs1/article/view/651
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Problems in programming

Репозитарії

Problems in programming
id pp_isofts_kiev_ua-article-651
record_format ojs
resource_txt_mv ppisoftskievua/29/ecf322275d95bf670659017f72c85629.pdf
spelling pp_isofts_kiev_ua-article-6512025-02-15T14:04:28Z Comparative analysis of height-based vegetation segmentation methods: evaluating efficiency and accuracy Розробка методів сегментаці рослинності за висотою та оцінка їх ефективност і точності Tsaryniuk, O.V. Glybovets, A.M. vegetation segmentation; spatial analysis; hexagonal grid; random points, convolution filters UDC 004.67 сегментація рослинності; просторовий аналіз; шестикутна сітка; випадкові точки; згорткові фільтри УДК 004.67 Height-based vector vegetation segmentation is one of the critical aspects of spatial analysis. This segmented data is used in radio propagation modeling, environmental monitoring, and vegetation mapping. Many studies on vector vegetation segmentation focus on delineating individual tree crowns, allowing detailed data sets to be obtained. However, the high level of detail results in a substantial data volume, making it impractical to use these datasets over large areas, such as an entire country. Segmentation of large vector data sets remains a significant challenge in geospatial data creation. In our study, we developed three different segmentation methods: hexagon segmentation, convolution segmentation, and random points method. A test data fragment was processed to compare the proposed methods and accuracy and volume metrics were calculated.Prombles in programming 2024; 2-3: 313-318 Cегментація векторної рослинності за висотою є одним із важливих етапів просторового аналізу. Цей тип даних використовується у побудові моделей розповсюдження радіосигналів, екологічному моніторингу та картографуванні рослинності. На сьогодні існує багато досліджень із сегментації векторної рослинності, що зосереджені на виокремленні індивідуальних крон дерев та дозволяють отримати деталізовані набори даних. Але наслідком високої деталізації є суттєвий обсяг, який унеможливлює використання цих даних на великих територіях, наприклад, в масштабі цілої країни. Сегментація великих масивів векторних даних досі є суттєвим викликом у сфері створення геопросторових даних. В процесі нашого дослідження ми розробили три різні методи сегментації: сегментація шестикутниками, сегментація за допомогою згорткових фільтрів та метод випадкових точок. Для порівняння запропонованих методів був опрацьований тестовий фрагмент даних та прораховані метрики точності та об’єму.Prombles in programming 2024; 2-3: 313-318 Інститут програмних систем НАН України 2024-12-17 Article Article application/pdf https://pp.isofts.kiev.ua/index.php/ojs1/article/view/651 10.15407/pp2024.02-03.313 PROBLEMS IN PROGRAMMING; No 2-3 (2024); 313-318 ПРОБЛЕМЫ ПРОГРАММИРОВАНИЯ; No 2-3 (2024); 313-318 ПРОБЛЕМИ ПРОГРАМУВАННЯ; No 2-3 (2024); 313-318 1727-4907 10.15407/pp2024.02-03 en https://pp.isofts.kiev.ua/index.php/ojs1/article/view/651/703 Copyright (c) 2024 PROBLEMS IN PROGRAMMING
institution Problems in programming
baseUrl_str https://pp.isofts.kiev.ua/index.php/ojs1/oai
datestamp_date 2025-02-15T14:04:28Z
collection OJS
language English
topic vegetation segmentation; spatial analysis; hexagonal grid; random points
convolution filters
UDC 004.67
spellingShingle vegetation segmentation; spatial analysis; hexagonal grid; random points
convolution filters
UDC 004.67
Tsaryniuk, O.V.
Glybovets, A.M.
Comparative analysis of height-based vegetation segmentation methods: evaluating efficiency and accuracy
topic_facet vegetation segmentation; spatial analysis; hexagonal grid; random points
convolution filters
UDC 004.67
сегментація рослинності
просторовий аналіз
шестикутна сітка
випадкові точки
згорткові фільтри
УДК 004.67
format Article
author Tsaryniuk, O.V.
Glybovets, A.M.
author_facet Tsaryniuk, O.V.
Glybovets, A.M.
author_sort Tsaryniuk, O.V.
title Comparative analysis of height-based vegetation segmentation methods: evaluating efficiency and accuracy
title_short Comparative analysis of height-based vegetation segmentation methods: evaluating efficiency and accuracy
title_full Comparative analysis of height-based vegetation segmentation methods: evaluating efficiency and accuracy
title_fullStr Comparative analysis of height-based vegetation segmentation methods: evaluating efficiency and accuracy
title_full_unstemmed Comparative analysis of height-based vegetation segmentation methods: evaluating efficiency and accuracy
title_sort comparative analysis of height-based vegetation segmentation methods: evaluating efficiency and accuracy
title_alt Розробка методів сегментаці рослинності за висотою та оцінка їх ефективност і точності
description Height-based vector vegetation segmentation is one of the critical aspects of spatial analysis. This segmented data is used in radio propagation modeling, environmental monitoring, and vegetation mapping. Many studies on vector vegetation segmentation focus on delineating individual tree crowns, allowing detailed data sets to be obtained. However, the high level of detail results in a substantial data volume, making it impractical to use these datasets over large areas, such as an entire country. Segmentation of large vector data sets remains a significant challenge in geospatial data creation. In our study, we developed three different segmentation methods: hexagon segmentation, convolution segmentation, and random points method. A test data fragment was processed to compare the proposed methods and accuracy and volume metrics were calculated.Prombles in programming 2024; 2-3: 313-318
publisher Інститут програмних систем НАН України
publishDate 2024
url https://pp.isofts.kiev.ua/index.php/ojs1/article/view/651
work_keys_str_mv AT tsaryniukov comparativeanalysisofheightbasedvegetationsegmentationmethodsevaluatingefficiencyandaccuracy
AT glybovetsam comparativeanalysisofheightbasedvegetationsegmentationmethodsevaluatingefficiencyandaccuracy
AT tsaryniukov rozrobkametodívsegmentacíroslinnostízavisotoûtaocínkaíhefektivnostítočností
AT glybovetsam rozrobkametodívsegmentacíroslinnostízavisotoûtaocínkaíhefektivnostítočností
first_indexed 2025-07-17T09:36:55Z
last_indexed 2025-07-17T09:36:55Z
_version_ 1838499720238989312
fulltext 313 Великі дані (Big Data) та Аналітика даних (Data Scienсe) УДК 004.67 http://doi.org/10.15407/pp2024.02-03.313 O.V. Tsaryniuk, A.M. Hlybovets DEVELOPMENT OF HEIGHT-BASED VEGETATION SEGMENTATION METHODS: EVALUATING EFFICIENCY AND ACCURACY Height-based vector vegetation segmentation is one of the critical aspects of spatial analysis. This segmented data is used in radio propagation modeling, environmental monitoring, and vegetation mapping. Many studies on vector vegetation segmentation focus on delineating individual tree crowns, allowing detailed data sets to be obtained. However, the high level of detail results in a substantial data volume, making it impractical to use these datasets over large areas, such as an entire country. Segmentation of large vector data sets remains a significant challenge in geospatial data creation. In our study, we developed three different segmentation methods: hexagon segmentation, convolution segmentation, and random points method. A test data fragment was processed to compare the proposed methods and accuracy and volume metrics were calculated. Keywords: vegetation segmentation, spatial analysis, hexagonal grid, random points, convolution filters. О.В. Царинюк, А.М. Глибовець РОЗРОБКА МЕТОДІВ СЕГМЕНТАЦІ РОСЛИННОСТІ ЗА ВИСОТОЮ ТА ОЦІНКА ЇХ ЕФЕКТИВНОСТ І ТОЧНОСТІ Cегментація векторної рослинності за висотою є одним із важливих етапів просторового аналізу. Цей тип даних використовується у побудові моделей розповсюдження радіосигналів, екологічному моніторингу та картографуванні рослинності. На сьогодні існує багато досліджень із сегментації векторної рослинності, що зосереджені на виокремленні індивідуальних крон дерев та дозволяють отримати деталізовані набори даних. Але наслідком високої деталізації є суттєвий обсяг, який унеможливлює використання цих даних на великих територіях, наприклад, в масштабі цілої країни. Сегментація великих масивів векторних даних досі є суттєвим викликом у сфері створення геопросторових даних. В процесі нашого дослідження ми розробили три різні методи сегментації: сегментація шестикутниками, сегментація за допомогою згорткових фільтрів та метод випадкових точок. Для порівняння запропонованих методів був опрацьований тестовий фрагмент даних та прораховані метрики точності та об’єму. Ключові слова: сегментація рослинності, просторовий аналіз, шестикутна сітка, випадкові точки, згорткові фільтри. Introduction Integrating diverse datasets is a pivotal challenge in geospatial data production, particularly in vegetation analysis, where combining vector-based vegetation cover with canopy height models (CHM) is essential for depth-enhanced segmentation. This study tackles such integration, aiming to segment vegetation based on height — a crucial step for comprehensive environmental and geographical analyses. Through the lens of satellite and aerial imagery, vegetation segmentation unlocks insights into vegetation distribution, health, and variety across vast areas. We introduce and assess three segmentation methods: Hexagon Segmentation, Convolution Segmentation, and Random Point Method, prioritizing their applicability to large-scale datasets, potentially encompassing entire countries. This comparative evaluation showcases the method's precision and practicality and advances our methodological toolkit for environmental studies. © O. Tsaryniuk, A. Hlybovets, 2024 ISSN 1727-4907. Проблеми програмування. 2024. №2-3 314 Великі дані (Big Data) та Аналітика даних (Data Scienсe) 1. Literature review Image segmentation is one of the most challenging tasks in image processing. Currently, there are numerous approaches and methods for image segmentation, such as the hexagon segmentation method Hofmann & Tiede (2014) and the Point Initialization Approach Mueller & Corcoran (2021). Most of the research in vegetation segmentation has focused on identifying individual tree crowns. This direction has been instrumental in detailed studies of forest ecosystems, as exemplified by the works of Douss et al. (2022), Li et al. (2014), Lindberg et al. (2021), and Jakubowski et al. (2013). These studies have significantly advanced our understanding of individual tree characteristics, forest structure, and biomass distribution. In contrast to the detailed focus on individual tree crowns, our research aims to develop a method for generalized segmentation that represents large arrays of vegetation with similar (or nearly identical) heights. This approach is well-suited for segmenting vegetation over vast areas, such as entire countries, addressing the need for macro-level vegetation analysis. Such analysis is essential for regional and national environmental assessments, land use planning, and large-scale conservation efforts. Our study on vegetation segmentation will leverage canopy height model (CHM) data with a 10-meter resolution, as developed by Liu et al. (2023). This CHM data is crucial for our methodology as it provides a detailed representation of vegetation height across large areas. Using a 10-meter resolution matrix allows for a fine-grained analysis of vegetation structure, making it manageable for large-scale applications like country-wide segmentation. 2. Methodology We developed three distinct methods to address the challenge of segmenting vegetation based on height. We aimed to understand the complexity of accurately determining vegetation at different altitudes on large datasets. A series of specific metrics were selected to assess the effectiveness and appropriateness of these approaches. These metrics serve as a foundation for evaluating each method's performance, ensuring a balanced analysis between the innovative aspects of our methodologies and their practical outcomes. The following metrics were used for comparison: Accuracy (1). This is the ratio of correctly identified pixels, TruePixels (2) to the total number of pixels. It is a straightforward measure of how accurately a model classifies or segments pixels. 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (1) Where: Total Number of Pixels is the sum of all pixels within all vegetation segments. 𝑇𝑇𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = ∑(|ℎ𝑇𝑇𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇(𝑝𝑝) − ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇(𝑝𝑝)| ≤ 3) (2) 𝑖𝑖 𝑇𝑇=0 Where: ℎ𝑇𝑇𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇(𝑝𝑝) is the height associated with pixel p in the input data, ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇(𝑝𝑝) is the height associated with pixel p in the output data, as determined by the segmentation process. Volume. This metric is expressed in the number of vertices after segmentation. It reflects the segmentation's complexity and detail. A more significant number of vertices usually implies a more detailed segmentation but negatively affects the display speed and processing. The Hexagon segmentation method involves creating a hexagonal grid with uniform hexagons (each side is 100 meters long) and generalizing the height matrix to a 3-meter interval. The vegetation vector is clipped according to the hexagon grid to form segments. Heights from the height matrix are then assigned to each segment, with the most frequent height value in the segment being selected (using the MODE function). Adjacent segments with the same height are merged. Statistics are computed for each height value and the number of coordinates necessary for comparing the methods. 315 Великі дані (Big Data) та Аналітика даних (Data Scienсe) Fig. 1. Result of the hexagon segmentation method Like the first method, the Convolution Segmentation Method also generalizes the height matrix to a 3-meter interval. The matrix is then generalized using a convolutional filter. Several iterations with different convolutions (7x7, 9x9) are conducted using the "Majority" operation, selecting the most frequently occurring value, as in the first method. The generalized matrix is then converted into vector polygons and intersected with the vegetation vector. Final statistics, including accuracy and volume, are calculated similarly to the first method. Fig. 2. Result of the convolution segmentation method The Random Point Method is based on creating random points within a vegetation polygon using several approaches: 1) Generation of random points across the bounding box of the polygon; 2) Generating points along the central line of the polygon; 3) Extracting the central point of the polygon. Utilizing different approaches for point generation ensures an even coverage of all types of polygons with points. The next step involves using the ArcGIS procedure 'Generate Subset Polygons' to construct Thiessen polygons for a given set of points. The methodology for assigning elevations to segments follows the approach established in previous methods. Each segment intersects with a generalized elevation matrix up to 3 meters. The elevation assigned to each segment is determined by the most frequently occurring pixel values within that intersection. This technique ensures consistency in elevation assignment across different segments, leveraging the established practices from prior methodologies for effective elevation mapping. Fig. 3. Result of random point segmentation method 3. Evaluation of the quality of the proposed approaches For this study, a test site covering an area of 430 square kilometers in the western Czech Republic was selected as the primary focus. The data concerning vegetation heights was sourced from a detailed 10-meter Canopy Height Model (CHM), as elaborated in the research conducted by Liu et al. (2023). The vegetation data itself was derived from a comprehensive vector dataset. This dataset was generated through machine learning techniques to automatically analyze high- resolution satellite imagery, a process meticulously carried out by the Visicom company. 316 Великі дані (Big Data) та Аналітика даних (Data Scienсe) Fig. 4. Research area location The methods discussed in this article, as well as the analysis of the results, were implemented on PC using the Feature Manipulation Engine (FME). The obtained Accuracy and Volume results are shown in Tables 1,2,3. Table 1 Hexagon method statistics Vegetation Height Accuracy % Total pixels in CHM Volume 0 66.22 980 558338 3 58.92 1020 6 87.51 4485 9 94.05 28114 12 93.19 80631 15 89.95 145203 18 82.01 219782 21 80.75 343390 24 82.07 512259 27 85.62 749204 30 88.73 905916 33 90.17 517650 36 90.29 94701 39 84.83 3723 Table 2 Convolution method statistics Vegetation Height Accuracy % Total pixels in CHM Volume 0 76.29 949 752412 3 58.6 1256 6 69.77 8657 9 79.43 44705 12 87.72 98143 15 92.41 156412 18 95.2 238215 21 96.38 360859 24 97.26 534555 27 98.17 741339 30 98.92 836759 33 99.39 485668 36 99.65 94605 39 99.73 5176 Table 3 Random point method statistics Vegetation Height Accuracy % Total pixels in CHM Volume 0 65.57 909 737853 3 58.26 1567 6 83.38 6361 9 88.01 41188 12 88.55 87758 15 82.67 141607 18 82.01 213139 21 80.75 360787 24 82.07 542611 27 85.62 780707 30 88.73 905794 33 90.17 516782 36 90.29 93784 39 84.83 4905 42 86.36 374 To evaluate the segmentation's accuracy, 3-meter height ranges were selected. After testing various height range options (1m, 3m, and 5m), the 3-meter range was chosen as optimal. This selection was based on its ability to accurately reflect the vegetation's true height while minimizing the amount of "noise" from individual pixels with varying heights. This compromise ensures a balance between precision and the reduction of outliers, providing a more reliable assessment of segmentation performance. We did not consider the performance evaluation of the segmentation methods within the scope of this study. This decision was based on the understanding that performance assessments conducted on a limited test dataset would not yield representative results. 317 Великі дані (Big Data) та Аналітика даних (Data Scienсe) Conclusion The findings emphasize the potential of integrating high-resolution satellite imagery and LiDAR data with advanced segmentation techniques to enhance understanding of forest ecosystems and vegetation distribution. The hexagon segmentation method provides detailed insights through a hexagonal grid, convolution segmentation leverages convolutional filters for generalized analysis, and the random points method introduces a novel segmentation approach through random point generation and Thiessen polygons. The research contributes to environmental science by proposing a scalable and efficient methodology for vegetation analysis over large geographical areas. Utilizing canopy height model data with a 10-meter resolution demonstrates the feasibility of these methods for country-wide vegetation segmentation, highlighting their potential for regional and national environmental assessments, land use planning, and conservation efforts. The comparative analysis reveals that each method has its merits in terms of accuracy and volume of the final segmented vector. The choice of method may depend on specific research needs, available computational resources, and the scale of the analysis. Future work should focus on refining these methodologies, exploring their application in different ecological contexts, and integrating additional data sources to enhance the accuracy and utility of vegetation segmentation for environmental monitoring and management. Considering the rapid development and high efficiency of machine learning methods, future development of this research aims to incorporate AI-based approaches alongside the methods already compared. The introduction of the Segment Anything Model (SAM) is planned. SAM, an innovative AI- driven method, promises to enhance segmentation accuracy and efficiency by leveraging advanced machine learning algorithms capable of adapting to various vegetation and height delineation tasks. This expansion will comprehensively evaluate traditional segmentation techniques against AI-powered models, potentially setting a new benchmark in vegetation segmentation methodologies. Additionally, plans are underway to apply the described segmentation methods to large countrywide datasets. In this context, it would be prudent to analyze each method's performance speed and calculate the computational resources required for its implementation. This comprehensive evaluation will ensure the methods' scalability and efficiency when applied to extensive data sets. Authorship Contribution Statement A. Hlybovets: Selection of metrics and assessment of the complexity of the proposed algorithms. O. Tsaryniuk: Development and implementation of segmentation methods. References 1. R. Douss, I.R Farah, Extraction of individual trees based on Canopy Height Model to monitor the state of the forest. Trees, Forests and People 8, 2022, doi: 10.1016/j.tfp.2022.100257. 2. P. Hofmann, D. Tiede,Image segmentation based on hexagonal sampling grids, South‐Eastern European Journal of Earth Observation and Geomatics 3, 2014 pp. 173-177. 3. M.K. Jakubowski, W. Li, Q. Guo, M. Kelly, Delineating individual trees from lidar data: A comparison of vector- and raster-based segmentation approaches. Remote Sensing 5(9), 2013, pp. 4163–4186. doi: 10.3390/rs5094163. 4. W. Li, Z. Niu, S. Gao, N. Huang, H. Chen, Correlating the horizontal and vertical distribution of LiDAR point clouds with components of biomass in a Picea crassifolia forest. Forests 5(8), 2014, pp. 1910–1930. doi: 10.3390/f5081910. 5. E. Lindberg, J. Holmgren, H. Olsson, Classification of tree species classes in 318 Великі дані (Big Data) та Аналітика даних (Data Scienсe) a hemi-boreal forest from multispectral airborne laser scanning data using a mini raster cell method. International Journal of Applied Earth Observation and Geoinformation 100, 2021, doi: 10.1016/j.jag.2021.102334. 6. S. Liu, et al, The overlooked contribution of trees outside forests to tree cover and woody biomass across Europe. Science Advances 9(37), 2023, doi: 10.1126/sciadv.adh4097. 7. L. Ma, Y. Gao, T. Fu, L. Cheng, Z. Chen, M. Li, Estimation of Ground PM2.5 Concentrations using a DEM- assisted Information Diffusion Algorithm: A Case Study in China. Scientific Reports 7(1), 2017, doi: 10.1038/s41598-017-14197-z. 8. J.N. Mueller, J.N. Corcoran, A Random Point Initialization Approach to Image Segmentation with Variational Level-sets. 2021, http://arxiv.org/abs/2112.12355. 9. R. Weibel, Using Vector and Raster- Based Techniques in Categorical Map Generalization, 1999. Одержано: 17.04.2024 Внутрішня рецензія отримана: 25.04.2024 Зовнішня рецензія отримана: 30.04.2024 Про авторів: Царинюк Олександр Васильович, Phd Комп'ютерні науки, аспірант. https://orcid.org/0000-0003-1394-2040 Глибовець Андрій Миколайович, доктор технічних наук, професор, декан факультету https://orcid.org/0000-0003-4282-481X Місце роботи авторів: Національний університет «Києво-Могилянська академія» https://www.ukma.edu.ua/