Вiд бiалгебр до операд. Квантова пряма та кооперада кореляцiйних функцiй

A q-line is a simple example of a braided Hopf algebra. This is just an algebra of polynomials kq[z] with primitive generator and q-deformed statistics.The (co)action of a q-line on an algebra is a q-derivation. We construct an operad and a cooperad from a bialgebra. In the case of a q-line, this co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Bespalov, Yu. N.
Format: Artikel
Sprache:English
Veröffentlicht: Publishing house "Academperiodika" 2018
Schlagworte:
Online Zugang:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018383
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Ukrainian Journal of Physics

Institution

Ukrainian Journal of Physics
Beschreibung
Zusammenfassung:A q-line is a simple example of a braided Hopf algebra. This is just an algebra of polynomials kq[z] with primitive generator and q-deformed statistics.The (co)action of a q-line on an algebra is a q-derivation. We construct an operad and a cooperad from a bialgebra. In the case of a q-line, this construction is related to the cooperad of correlation functions of I. Kriz et al., which describes vertex algebras.Modules over the factor-algebra kq[z]/(z^N) are N-complexes. We consider a homotopical category of N-complexes as an example of the q-analog of Maltsiniotis’ strongly triangulated category.The general constructions are considered in the context of iterated monoidal categories with unbiased lax tensor products described in the terms of the Gray tensor products of 2-fold categorical operads of sequential trees Tree.