Нижні енергетичні рівні одновимірного слабко взаємодіючого бозе-газу з нульовими межовими умовами
We diagonalize the second-quantized Hamiltonian of a one-dimensional Bose gas with a non-point repulsive interatomic potential and zero boundary conditions. At a weak coupling, the solutions for the ground-state energy E0 and the dispersion law E(k) coincide with the Bogoliubov solutions for a perio...
Gespeichert in:
Datum: | 2019 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Publishing house "Academperiodika"
2019
|
Schlagworte: | |
Online Zugang: | https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2018576 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Ukrainian Journal of Physics |
Institution
Ukrainian Journal of PhysicsZusammenfassung: | We diagonalize the second-quantized Hamiltonian of a one-dimensional Bose gas with a non-point repulsive interatomic potential and zero boundary conditions. At a weak coupling, the solutions for the ground-state energy E0 and the dispersion law E(k) coincide with the Bogoliubov solutions for a periodic system. In this case, the single-particle density matrix F1(x, x′) at T = 0 is close to the solution for a periodic system and, at T > 0, is significantly different from it. We also obtain that the wave function ⟨w(x, t)⟩ of the effective condensate is close to a constant √︀N0/L inside the system and vanishes on the boundaries (here, N0 is the number of atoms in the effective condensate, and L is the size of the system). We find the criterion of applicability of the method, according to which the method works for a finite system at very low temperature and with a weak coupling (a weak interaction or a large concentration). |
---|