Чисельнi дослiдження властивостей заплутаностi в квантових моделях Ізiнга та XXZ

We investigate entanglement properties of infinite one- and two-dimensional spin-1/2 quantum Ising and XXZ models. Tensor network methods (TI MPS with single-site update and TEBD for MPS, TERG and CTMRG with “simple update” for PEPS) are used to model the ground states of the studied models. Differe...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Braiorr-Orrs, B., Weyrauch, M., Rakov, M. V.
Формат: Стаття
Мова:English
Опубліковано: Publishing house "Academperiodika" 2019
Теми:
Онлайн доступ:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2019064
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Ukrainian Journal of Physics

Репозитарії

Ukrainian Journal of Physics
Опис
Резюме:We investigate entanglement properties of infinite one- and two-dimensional spin-1/2 quantum Ising and XXZ models. Tensor network methods (TI MPS with single-site update and TEBD for MPS, TERG and CTMRG with “simple update” for PEPS) are used to model the ground states of the studied models. Different entanglement measures, such as the one-site entanglement entropy, one-tangle, concurrence of formation and assistance, negativity and entanglement per bond are compared with respect to their ability to exhibit “structures” in the phase diagram of the models (e.g., phase transitions). We study the connection between symmetries and the entanglement of ground states and analyze short- and long-range entanglement through the entanglement monogamy.