Новий підхід до наближеного аналітичного розв’язку тривимірного рівняння Шредінгера для воднеподібних і нейтральних атомів у моделі з узагальненим потенціалом Хеллмана
Within the framework of nonrelativistic noncommutative quantum mechanics using the improved approximation scheme to the centrifugal term for any l-states via the generalized Bopp’s shift method and standard perturbation theory, we have obtained the energy eigenvalues of a newly proposed generalized...
Saved in:
Date: | 2020 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Publishing house "Academperiodika"
2020
|
Subjects: | |
Online Access: | https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2019498 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Ukrainian Journal of Physics |
Institution
Ukrainian Journal of PhysicsSummary: | Within the framework of nonrelativistic noncommutative quantum mechanics using the improved approximation scheme to the centrifugal term for any l-states via the generalized Bopp’s shift method and standard perturbation theory, we have obtained the energy eigenvalues of a newly proposed generalized Hellmann potential model (the GHP model) for the hydrogenic atoms and neutral atoms. The potential is a superposition of the attractive Coulomb potential plus Yukawa one, and new central terms appear as a result of the effects of noncommutativity properties of space and phase in the Hellmann potential model. The obtained energy eigen-values appear as a function of the generalized gamma function, the discrete atomic quantum numbers (j, n, l, s and m), infinitesimal parameters (a, b, б) which are induced by the position-position and phase-phase noncommutativity, and, the dimensional parameters (Θ, 0) of the GHP model, in the nonrelativistic noncommutative three-dimensional real space phase (NC: 3D-RSP). Furthermore, we have shown that the corresponding Hamiltonian operator with (NC: 3D-RSP) symmetries is the sum of the Hamiltonian operator of the Hellmann potential model and two operators, the first one is the modified spin-orbit interaction, while the second is the modified Zeeman operator for the hydrogenic and neutral atoms. |
---|