Модель випаровування крапель ідеальних бі¬нарних спиртових розчинів у дифузійному та перехідному режимах

The development of models describing the process of evaporation of droplets of various solutions – in particular, alcohol ones – is a difficult task in the general case; namely, it is necessary to solve a system of coupled mass and heat transfer equations. An alternative approach consists in creatin...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2022
Автори: Bulavin, L.A., Verbinska, G.M., Brytan, A.V., Stepowyi, Ya.O.
Формат: Стаття
Мова:English
Ukrainian
Опубліковано: Publishing house "Academperiodika" 2022
Теми:
Онлайн доступ:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2022017
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Ukrainian Journal of Physics

Репозитарії

Ukrainian Journal of Physics
Опис
Резюме:The development of models describing the process of evaporation of droplets of various solutions – in particular, alcohol ones – is a difficult task in the general case; namely, it is necessary to solve a system of coupled mass and heat transfer equations. An alternative approach consists in creating a simplified model making allowance for those physical mechanisms that are essential under specific evaporation conditions. On the basis of this approach and in the framework of the Maxwell–Fuchs evaporation theory, a model has been proposed to describe the evaporation process of ideal binary solutions in the diffusive and transient regimes. In order to verify the model, experimental studies were carried out dealing with the evaporation of droplets of binary alcohol solutions (propanol-octanol and butanol-octanol, with initial octanol mole fractions of 0.25, 0.5, and 0.75) in the dry nitrogen atmosphere at a temperature of 293 K in the diffusive and transient regimes. The proposed model was used to calculate the time dependences of the droplet surface area for the researched binary alcohol solutions. The obtained model curves are compared with experimental data. It is shown that, within the validity limits of its approximations, the model can be used to describe the evaporation process both in the diffusive and transient regimes.