Поліноміальні інваріанти Александера торичних вузлів T(n, 3) і поліноми Чебишова
The explicit formula, which expresses the Alexander polynomials ∆n,3(t) of torus knots T(n, 3) as a sum of the Alexander polynomials ∆k,2(t) of torus knots T(k, 2), is found. Using this result and those from our previous papers, we express the Alexander polynomials ∆n,3(t) through Chebyshev polynomi...
Gespeichert in:
Datum: | 2022 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Publishing house "Academperiodika"
2022
|
Schlagworte: | |
Online Zugang: | https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2022059 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Ukrainian Journal of Physics |
Institution
Ukrainian Journal of PhysicsZusammenfassung: | The explicit formula, which expresses the Alexander polynomials ∆n,3(t) of torus knots T(n, 3) as a sum of the Alexander polynomials ∆k,2(t) of torus knots T(k, 2), is found. Using this result and those from our previous papers, we express the Alexander polynomials ∆n,3(t) through Chebyshev polynomials. The latter result is extended to general torus knots T(n, l) with n and l coprime. |
---|