Поліноміальні інваріанти Александера торичних вузлів T(n, 3) і поліноми Чебишова

The explicit formula, which expresses the Alexander polynomials ∆n,3(t) of torus knots T(n, 3) as a sum of the Alexander polynomials ∆k,2(t) of torus knots T(k, 2), is found. Using this result and those from our previous papers, we express the Alexander polynomials ∆n,3(t) through Chebyshev polynomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2022
Hauptverfasser: Gavrilik, A.M., Pavlyuk, A.M.
Format: Artikel
Sprache:English
Veröffentlicht: Publishing house "Academperiodika" 2022
Schlagworte:
-
Online Zugang:https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2022059
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Ukrainian Journal of Physics

Institution

Ukrainian Journal of Physics
Beschreibung
Zusammenfassung:The explicit formula, which expresses the Alexander polynomials ∆n,3(t) of torus knots T(n, 3) as a sum of the Alexander polynomials ∆k,2(t) of torus knots T(k, 2), is found. Using this result and those from our previous papers, we express the Alexander polynomials ∆n,3(t) through Chebyshev polynomials. The latter result is extended to general torus knots T(n, l) with n and l coprime.