Invariant Totally Geodesic Unit Vector Fields on Three-Dimensional Lie Groups
We give a complete list of left-invariant unit vector fields on three-dimensional Lie groups equipped with a left-invariant metric that generate a totally geodesic submanifold in the unit tangent bundle of a group equipped with the Sasaki metric. As a result we obtain that each three-dimensional Lie...
Saved in:
Date: | 2007 |
---|---|
Main Author: | Yampolsky, A. |
Format: | Article |
Language: | English |
Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2007
|
Series: | Журнал математической физики, анализа, геометрии |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/106449 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Invariant Totally Geodesic Unit Vector Fields on Three-Dimensional Lie Groups / A. Yampolsky // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 253-276. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Totally geodesic submanifolds in the tangent bundle of a Riemannian 2-manifold
by: Yampolsky, A.
Published: (2005) -
Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras
by: Magazev, A.A., et al.
Published: (2015) -
Geodesic completeness of the left-invariant metrics on RHn
by: S. Vukmirovic, et al.
Published: (2020) -
Extremality of geodesic and criteria for determination of universal multipoint invariants
by: D. O. Dziakovych
Published: (2019) -
Geodesic Equations on Diffeomorphism Groups
by: Vizman, C.
Published: (2008)