Invariant Totally Geodesic Unit Vector Fields on Three-Dimensional Lie Groups
We give a complete list of left-invariant unit vector fields on three-dimensional Lie groups equipped with a left-invariant metric that generate a totally geodesic submanifold in the unit tangent bundle of a group equipped with the Sasaki metric. As a result we obtain that each three-dimensional Lie...
Gespeichert in:
Datum: | 2007 |
---|---|
1. Verfasser: | Yampolsky, A. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2007
|
Schriftenreihe: | Журнал математической физики, анализа, геометрии |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/106449 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Invariant Totally Geodesic Unit Vector Fields on Three-Dimensional Lie Groups / A. Yampolsky // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 253-276. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Totally geodesic submanifolds in the tangent bundle of a Riemannian 2-manifold
von: Yampolsky, A.
Veröffentlicht: (2005) -
Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras
von: Magazev, A.A., et al.
Veröffentlicht: (2015) -
Geodesic completeness of the left-invariant metrics on RHn
von: S. Vukmirovic, et al.
Veröffentlicht: (2020) -
Extremality of geodesic and criteria for determination of universal multipoint invariants
von: D. O. Dziakovych
Veröffentlicht: (2019) -
Geodesic Equations on Diffeomorphism Groups
von: Vizman, C.
Veröffentlicht: (2008)