Solving of Partial Differential Equations under Minimal Conditions
It is proved that a differentiable with respect to each variable function f : R2 → R is a solution of the equation ∂u/∂x + ∂u/∂y = 0 if and only if there exists a function φ : R → R such that f(x, y) = φ(x - y). This gives a positive answer to a question by R. Baire. Besides, this result is used to...
Saved in:
Date: | 2008 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2008
|
Series: | Журнал математической физики, анализа, геометрии |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/106505 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Solving of Partial Differential Equations under Minimal Conditions / V.K. Maslyuchenko, V.V. Mykhaylyuk // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 2. — С. 252-266. — Бібліогр.: 7 назв. — англ. |