Solving of Partial Differential Equations under Minimal Conditions

It is proved that a differentiable with respect to each variable function f : R2 → R is a solution of the equation ∂u/∂x + ∂u/∂y = 0 if and only if there exists a function φ : R → R such that f(x, y) = φ(x - y). This gives a positive answer to a question by R. Baire. Besides, this result is used to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
Hauptverfasser: Maslyuchenko, V.K., Mykhaylyuk, V.V.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2008
Schriftenreihe:Журнал математической физики, анализа, геометрии
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/106505
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Solving of Partial Differential Equations under Minimal Conditions / V.K. Maslyuchenko, V.V. Mykhaylyuk // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 2. — С. 252-266. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:It is proved that a differentiable with respect to each variable function f : R2 → R is a solution of the equation ∂u/∂x + ∂u/∂y = 0 if and only if there exists a function φ : R → R such that f(x, y) = φ(x - y). This gives a positive answer to a question by R. Baire. Besides, this result is used to solve analogous partial di erential equations in abstract spaces and partial differential equations of higher-order.