On Pseudospherical Surfaces in E⁴ with Grassmann Image of Prescribed Type
It is demonstrated that there exist surfaces of constant negative Gauss curvature in E⁴ whose Grassmann image consists of either hyperbolic or parabolic or elliptic points. As a consequence, there exist surfaces of constant negative Gauss curvature in E⁴ which do not admit Backlund transformations w...
Saved in:
Date: | 2006 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2006
|
Series: | Журнал математической физики, анализа, геометрии |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/106588 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | On Pseudospherical Surfaces in E⁴ with Grassmann Image of Prescribed Type / V. Gorkavyy // Журнал математической физики, анализа, геометрии. — 2006. — Т. 2, № 2. — С. 138-148. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | It is demonstrated that there exist surfaces of constant negative Gauss curvature in E⁴ whose Grassmann image consists of either hyperbolic or parabolic or elliptic points. As a consequence, there exist surfaces of constant negative Gauss curvature in E⁴ which do not admit Backlund transformations with help of pseudospherical congruencies. A geometric representation for pseudospherical surfaces in E⁴ with parabolic Grassmann image is proposed. |
---|