On the Characteristic Operators and Projections and on the Solutions of Weyl Type of Dissipative and Accumulative Operator Systems. I. General Case
In the context of dissipative and accumulative di erential equations (which contain the spectral parameter λ nonlinearly) in a separable Hilbert space H we introduce a characteristic operator M(λ) that works as an analog of the characteristic Weyl-Titchmarsh matrix. Its existence and properties are...
Gespeichert in:
Datum: | 2006 |
---|---|
1. Verfasser: | Khrabustovsky, V.I. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2006
|
Schriftenreihe: | Журнал математической физики, анализа, геометрии |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/106589 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | On the Characteristic Operators and Projections and on the Solutions of Weyl Type of Dissipative and Accumulative Operator Systems. I. General Case / V.I. Khrabustovsky // Журнал математической физики, анализа, геометрии. — 2006. — Т. 2, № 2. — С. 149-175. — Бібліогр.: 31 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
On the Characteristic Operators and Projections and on the Solutions of Weyl Type of Dissipative and Accumulative Operator Systems. II. Abstract Theory
von: Khrabustovsky, V.I.
Veröffentlicht: (2006) -
On the Characteristic Operators and Projections and on the Solutions of Weyl Type of Dissipative and Accumulative Operator Systems.III. Separated Boundary Conditions
von: Khrabustovsky, V.I.
Veröffentlicht: (2006) -
Formulae of Weyl function using resolvent of the operator
von: H. V. Ivasyk, et al.
Veröffentlicht: (2021) -
Dissipative Dirac operator with general boundary conditions on time scales
von: B. P. Allahverdiev, et al.
Veröffentlicht: (2020) -
Some analytic properties of the Weyl function of closed operator
von: O. H. Storozh
Veröffentlicht: (2014)