The Truncated Fourier Operator. General Results

Let F be the one dimensional Fourier-Plancherel operator and E be a subset of the real axis. The truncated Fourier operator is the operator FE of the form FE = PEFPE, where (PEx)(t) = 1IE(t)x(t), and 1IE(t) is the indicator function of the set E. In the presented work, the basic properties of the op...

Full description

Saved in:
Bibliographic Details
Date:2012
Main Authors: Katsnelson, V., Machluf, R.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2012
Series:Журнал математической физики, анализа, геометрии
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/106716
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:The Truncated Fourier Operator. General Results / V. Katsnelson, R. Machluf // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 2. — С. 158-176. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine