The Truncated Fourier Operator. General Results
Let F be the one dimensional Fourier-Plancherel operator and E be a subset of the real axis. The truncated Fourier operator is the operator FE of the form FE = PEFPE, where (PEx)(t) = 1IE(t)x(t), and 1IE(t) is the indicator function of the set E. In the presented work, the basic properties of the op...
Saved in:
Date: | 2012 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2012
|
Series: | Журнал математической физики, анализа, геометрии |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/106716 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | The Truncated Fourier Operator. General Results / V. Katsnelson, R. Machluf // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 2. — С. 158-176. — Бібліогр.: 8 назв. — англ. |