Universality at the Edge for Unitary Matrix Models
Using the results on the 1/n-expansion of the Verblunsky coe±cients for a class of polynomials orthogonal on the unit circle with n varying weight, we prove that the local eigenvalue statistic for unitary matrix models is independent of the form of the potential, determining the matrix model. Our pr...
Saved in:
Date: | 2012 |
---|---|
Main Author: | Poplavskyi, M. |
Format: | Article |
Language: | English |
Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2012
|
Series: | Журнал математической физики, анализа, геометрии |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/106729 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Universality at the Edge for Unitary Matrix Models / M. Poplavskyi // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 4. — С. 367-392. — Бібліогр.: 17 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Universality at the Edge for Unitary Matrix Models
by: M. Poplavskyi
Published: (2012) -
Bulk Universality for Unitary Matrix Models
by: Poplavskyi, M.
Published: (2009) -
On Universality of Bulk Local Regime of the Deformed Gaussian Unitary Ensemble
by: Shcherbina, T.
Published: (2009) -
An Update on Local Universality Limits for Correlation Functions Generated by Unitary Ensembles
by: Lubinsky, D.S.
Published: (2016) -
The method of unitary clothing transformations in quantum field theory: the bound-state problem and the S-matrix
by: Shebeko, A.V.
Published: (2007)