Spectral properties of the two-dimensional multiwell potential

Two-dimensional multiwell Hamiltonian system with four local minima is considered. The motion of the system shifts from regular to chaotic through “mixed state”, i.e. the state, when regular and irregular regimes of motion coexist in different local minima. Three regimes of motion – regular ( R),...

Full description

Saved in:
Bibliographic Details
Date:2007
Main Authors: Chekanov, N.A., Shevchenko, E.V.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Series:Вопросы атомной науки и техники
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/110965
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Spectral properties of the two-dimensional multiwell potential / N.A. Chekanov, E.V. Shevchenko // Вопросы атомной науки и техники. — 2007. — № 3. — С. 270-264. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Two-dimensional multiwell Hamiltonian system with four local minima is considered. The motion of the system shifts from regular to chaotic through “mixed state”, i.e. the state, when regular and irregular regimes of motion coexist in different local minima. Three regimes of motion – regular ( R), mixed state (RC), and chaotic (C) – are considered. For each energy region the spectrum is calculated by direct diagonalization in polar coordinates, the eigenstates are classified according to the irreducible representations of C3v -point group, and the spectral statistical properties are analyzed and compared to the theoretical predictions for integrable, chaotic and generic (neither regular nor chaotic) systems.