Quantitative Methods for the Study of Al—Li Alloys: Phase Composition, Anisotropy of Properties, and Phase Stability

A quantitative approach to the determination of the ratio between binary and ternary intermetallic phases in the Al—Mg(Cu)—Li alloys is developed on the basis of the balance equations of the chemical and phase compositions as well as the experimentally measured lattice parameter of the α-solid solut...

Full description

Saved in:
Bibliographic Details
Date:2015
Main Authors: Betsofen, S., Grushin, I., Knyazev, M., Dolgova, M.
Format: Article
Language:English
Published: Інститут металофізики ім. Г.В. Курдюмова НАН України 2015
Series:Металлофизика и новейшие технологии
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/112444
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Quantitative Methods for the Study of Al—Li Alloys: Phase Composition, Anisotropy of Properties, and Phase Stability / S. Betsofen, I. Grushin, M. Knyazev, M. Dolgova // Металлофизика и новейшие технологии. — 2015. — Т. 37, № 11. — С. 1549-1565. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:A quantitative approach to the determination of the ratio between binary and ternary intermetallic phases in the Al—Mg(Cu)—Li alloys is developed on the basis of the balance equations of the chemical and phase compositions as well as the experimentally measured lattice parameter of the α-solid solution. As shown, for the Al—Mg(Cu)—Li alloys, the ratio between the fractions of the δ′ (Al₃Li) and S₁ (T₁) phases is determined by the ratio between the molar fractions of Li and Mg (Cu). The equations for the calculation of the contents of the S₁ (Al₂MgLi), T₁ (Al₂CuLi) and δ′ (Al₃Li) phases in the 1420, 1424, 5090 alloys (Al—Mg—Li alloys) and in the 1440, 1460, 1461, 1441, 1469, 2090, 2094, 2095, 8090, Weldalite 049 alloys (Al—Cu—Li alloys) used in Russia and other countries are given. The possibilities of the method application for the study and prediction of the phase stability and anisotropy of the elastic and strength properties are considered.