Dynamical Theory of Triple-Crystal X-ray Diffractometry and Characterization of Microdefects and Strains in Imperfect Single Crystals

A short review of basic principles and limitations in obtaining the analytical expressions for the coherent and diffuse scattering intensities measured by the triple-crystal diffractometer (TCD) are presented. Explicit analytical expressions are given for both the diffuse components of TCD profiles...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Molodkin, V.B., Olikhovskii, S.I., Len, E.G., Kyslovskyy, Ye.M., Reshetnyk, O.V., Vladimirova, T.P., Sheludchenko, B.V., Skakunova, E.S., Lizunov, V.V., Kochelab, E.V., Fodchuk, I.M., Klad’ko, V.P.
Формат: Стаття
Мова:English
Опубліковано: Інститут металофізики ім. Г.В. Курдюмова НАН України 2016
Назва видання:Металлофизика и новейшие технологии
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/112466
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Dynamical Theory of Triple-Crystal X-ray Diffractometry and Characterization of Microdefects and Strains in Imperfect Single Crystals / V. B. Molodkin, S. I. Olikhovskii, E. G. Len, Ye. M. Kyslovskyy, O. V. Reshetnyk, T. P. Vladimirova, B. V. Sheludchenko, E. S. Skakunova, V. V. Lizunov, E. V. Kochelab, I. M. Fodchuk, and V. P. Klad’ko // Металлофизика и новейшие технологии. — 2016. — Т. 38, № 1. — С. 99-139. — Бібліогр.: 48 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112466
record_format dspace
spelling irk-123456789-1124662017-01-23T03:02:32Z Dynamical Theory of Triple-Crystal X-ray Diffractometry and Characterization of Microdefects and Strains in Imperfect Single Crystals Molodkin, V.B. Olikhovskii, S.I. Len, E.G. Kyslovskyy, Ye.M. Reshetnyk, O.V. Vladimirova, T.P. Sheludchenko, B.V. Skakunova, E.S. Lizunov, V.V. Kochelab, E.V. Fodchuk, I.M. Klad’ko, V.P. Дефекты кристаллической решётки A short review of basic principles and limitations in obtaining the analytical expressions for the coherent and diffuse scattering intensities measured by the triple-crystal diffractometer (TCD) are presented. Explicit analytical expressions are given for both the diffuse components of TCD profiles and the reciprocal-lattice maps measured within the Bragg diffraction geometry from crystals containing microdefects of several types. These formulas are derived by using the generalized dynamical theory of X-ray scattering by imperfect crystals with randomly distributed microdefects. Some examples demonstrating possibilities of the developed theory for quantitative characterization of structural imperfections in real single crystals are represented. In particular, characteristics of the complicated microdefect structures fabricated in various silicon crystals grown by Czochralski technique and floating-zone melting method are determined by analytical treatment of the measured TCD profiles, rocking curves, and reciprocal space maps. В роботі представлено короткий огляд основних принципів, що використовуються при одержанні аналітичних виразів для когерентної та дифузної інтенсивностей розсіяння, виміряних трикристальним дифрактометром (ТКД). Одержано точні аналітичні вирази для дифузних компонент як ТКД-профілів, так і мап оберненого простору, виміряних у геометрії дифракції за Бреґґом для кристалів, які містять мікродефекти декількох типів. Ці формули одержано при використанні узагальненої динамічної теорії розсіяння Рентґенових променів неідеальними кристалами з випадково розподіленими мікродефектами. Представлено деякі приклади, які демонструють можливості розробленої теорії для кількісної характеризації недосконалостей структури в реальних монокристалах. Зокрема, шляхом аналітичного обробляння виміряних ТКД-профілів, кривих відбивання і мап оберненого простору визначено характеристики складних структур мікродефектів, створених у кристалах силіцію методами Чохральського і зонного топлення. В работе представлен краткий обзор основных принципов, используемых при получении аналитических выражений для когерентной и диффузной интенсивностей рассеяния, измеряемых трёхкристальным дифрактометром (ТКД). Получены точные аналитические выражения для диффузных компонент как ТКД-профилей, так и карт обратного пространства, измеренных в геометрии дифракции по Брэггу для кристаллов, содержащих микродефекты нескольких типов. Эти формулы получены при использовании обобщённой динамической теории рассеяния рентгеновских лучей неидеальными кристаллами со случайно распределёнными микродефектами. Представлены некоторые примеры, демонстрирующие возможности разработанной теории для количественной характеризации несовершенств структуры в реальных монокристаллах. В частности, путём аналитической обработки измеренных ТКД-профилей, кривых отражения и карт обратного пространства определены характеристики сложных структур микродефектов, созданных в кристаллах кремния методами Чохральского и зонной плавки. 2016 Article Dynamical Theory of Triple-Crystal X-ray Diffractometry and Characterization of Microdefects and Strains in Imperfect Single Crystals / V. B. Molodkin, S. I. Olikhovskii, E. G. Len, Ye. M. Kyslovskyy, O. V. Reshetnyk, T. P. Vladimirova, B. V. Sheludchenko, E. S. Skakunova, V. V. Lizunov, E. V. Kochelab, I. M. Fodchuk, and V. P. Klad’ko // Металлофизика и новейшие технологии. — 2016. — Т. 38, № 1. — С. 99-139. — Бібліогр.: 48 назв. — англ. 1024-1809 PACS: 61.05.cc, 61.05.cp, 61.72.Dd, 61.72.J-, 68.35.Gy, 81.40.Ef, 81.40.Wx DOI: 10.15407/mfint.38.01.0099 http://dspace.nbuv.gov.ua/handle/123456789/112466 en Металлофизика и новейшие технологии Інститут металофізики ім. Г.В. Курдюмова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Дефекты кристаллической решётки
Дефекты кристаллической решётки
spellingShingle Дефекты кристаллической решётки
Дефекты кристаллической решётки
Molodkin, V.B.
Olikhovskii, S.I.
Len, E.G.
Kyslovskyy, Ye.M.
Reshetnyk, O.V.
Vladimirova, T.P.
Sheludchenko, B.V.
Skakunova, E.S.
Lizunov, V.V.
Kochelab, E.V.
Fodchuk, I.M.
Klad’ko, V.P.
Dynamical Theory of Triple-Crystal X-ray Diffractometry and Characterization of Microdefects and Strains in Imperfect Single Crystals
Металлофизика и новейшие технологии
description A short review of basic principles and limitations in obtaining the analytical expressions for the coherent and diffuse scattering intensities measured by the triple-crystal diffractometer (TCD) are presented. Explicit analytical expressions are given for both the diffuse components of TCD profiles and the reciprocal-lattice maps measured within the Bragg diffraction geometry from crystals containing microdefects of several types. These formulas are derived by using the generalized dynamical theory of X-ray scattering by imperfect crystals with randomly distributed microdefects. Some examples demonstrating possibilities of the developed theory for quantitative characterization of structural imperfections in real single crystals are represented. In particular, characteristics of the complicated microdefect structures fabricated in various silicon crystals grown by Czochralski technique and floating-zone melting method are determined by analytical treatment of the measured TCD profiles, rocking curves, and reciprocal space maps.
format Article
author Molodkin, V.B.
Olikhovskii, S.I.
Len, E.G.
Kyslovskyy, Ye.M.
Reshetnyk, O.V.
Vladimirova, T.P.
Sheludchenko, B.V.
Skakunova, E.S.
Lizunov, V.V.
Kochelab, E.V.
Fodchuk, I.M.
Klad’ko, V.P.
author_facet Molodkin, V.B.
Olikhovskii, S.I.
Len, E.G.
Kyslovskyy, Ye.M.
Reshetnyk, O.V.
Vladimirova, T.P.
Sheludchenko, B.V.
Skakunova, E.S.
Lizunov, V.V.
Kochelab, E.V.
Fodchuk, I.M.
Klad’ko, V.P.
author_sort Molodkin, V.B.
title Dynamical Theory of Triple-Crystal X-ray Diffractometry and Characterization of Microdefects and Strains in Imperfect Single Crystals
title_short Dynamical Theory of Triple-Crystal X-ray Diffractometry and Characterization of Microdefects and Strains in Imperfect Single Crystals
title_full Dynamical Theory of Triple-Crystal X-ray Diffractometry and Characterization of Microdefects and Strains in Imperfect Single Crystals
title_fullStr Dynamical Theory of Triple-Crystal X-ray Diffractometry and Characterization of Microdefects and Strains in Imperfect Single Crystals
title_full_unstemmed Dynamical Theory of Triple-Crystal X-ray Diffractometry and Characterization of Microdefects and Strains in Imperfect Single Crystals
title_sort dynamical theory of triple-crystal x-ray diffractometry and characterization of microdefects and strains in imperfect single crystals
publisher Інститут металофізики ім. Г.В. Курдюмова НАН України
publishDate 2016
topic_facet Дефекты кристаллической решётки
url http://dspace.nbuv.gov.ua/handle/123456789/112466
citation_txt Dynamical Theory of Triple-Crystal X-ray Diffractometry and Characterization of Microdefects and Strains in Imperfect Single Crystals / V. B. Molodkin, S. I. Olikhovskii, E. G. Len, Ye. M. Kyslovskyy, O. V. Reshetnyk, T. P. Vladimirova, B. V. Sheludchenko, E. S. Skakunova, V. V. Lizunov, E. V. Kochelab, I. M. Fodchuk, and V. P. Klad’ko // Металлофизика и новейшие технологии. — 2016. — Т. 38, № 1. — С. 99-139. — Бібліогр.: 48 назв. — англ.
series Металлофизика и новейшие технологии
work_keys_str_mv AT molodkinvb dynamicaltheoryoftriplecrystalxraydiffractometryandcharacterizationofmicrodefectsandstrainsinimperfectsinglecrystals
AT olikhovskiisi dynamicaltheoryoftriplecrystalxraydiffractometryandcharacterizationofmicrodefectsandstrainsinimperfectsinglecrystals
AT leneg dynamicaltheoryoftriplecrystalxraydiffractometryandcharacterizationofmicrodefectsandstrainsinimperfectsinglecrystals
AT kyslovskyyyem dynamicaltheoryoftriplecrystalxraydiffractometryandcharacterizationofmicrodefectsandstrainsinimperfectsinglecrystals
AT reshetnykov dynamicaltheoryoftriplecrystalxraydiffractometryandcharacterizationofmicrodefectsandstrainsinimperfectsinglecrystals
AT vladimirovatp dynamicaltheoryoftriplecrystalxraydiffractometryandcharacterizationofmicrodefectsandstrainsinimperfectsinglecrystals
AT sheludchenkobv dynamicaltheoryoftriplecrystalxraydiffractometryandcharacterizationofmicrodefectsandstrainsinimperfectsinglecrystals
AT skakunovaes dynamicaltheoryoftriplecrystalxraydiffractometryandcharacterizationofmicrodefectsandstrainsinimperfectsinglecrystals
AT lizunovvv dynamicaltheoryoftriplecrystalxraydiffractometryandcharacterizationofmicrodefectsandstrainsinimperfectsinglecrystals
AT kochelabev dynamicaltheoryoftriplecrystalxraydiffractometryandcharacterizationofmicrodefectsandstrainsinimperfectsinglecrystals
AT fodchukim dynamicaltheoryoftriplecrystalxraydiffractometryandcharacterizationofmicrodefectsandstrainsinimperfectsinglecrystals
AT kladkovp dynamicaltheoryoftriplecrystalxraydiffractometryandcharacterizationofmicrodefectsandstrainsinimperfectsinglecrystals
first_indexed 2025-07-08T03:59:08Z
last_indexed 2025-07-08T03:59:08Z
_version_ 1837049734263472128
fulltext 99 ВЗАИМОДЕЙСТВИЯ ИЗЛУЧЕНИЯ И ЧАСТИЦ С КОНДЕНСИРОВАННЫМ ВЕЩЕСТВОМ PACS numbers:61.05.cc, 61.05.cp,61.72.Dd,61.72.J-,68.35.Gy,81.40.Ef, 81.40.Wx Dynamical Theory of Triple-Crystal X-Ray Diffractometry and Characterization of Microdefects and Strains in Imperfect Single Crystals V. B. Molodkin, S. I. Olikhovskii, E. G. Len, Ye. M. Kyslovskyy, O. V. Reshetnyk, T. P. Vladimirova, B. V. Sheludchenko, O. S. Skakunova, V. V. Lizunov, E. V. Kochelab, I. M. Fodchuk*, and V. P. Klad’ko** G. V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyiv, Ukraine *Yuriy Fedkovych Chernivtsi National University, 2 Kotsyubyns’kyy Ave., 58012 Chernivtsi, Ukraine **V. Ye. Lashkaryov Institute of Semiconductor Physics, N.A.S. of Ukraine, 41 Nauky Ave., 03028 Kyiv, Ukraine A short review of basic principles and limitations in obtaining the analytical expressions for the coherent and diffuse scattering intensities measured by the triple-crystal diffractometer (TCD) are presented. Explicit analytical expres- sions are given for both the diffuse components of TCD profiles and the recipro- cal-lattice maps measured within the Bragg diffraction geometry from crystals containing microdefects of several types. These formulas are derived by using the generalized dynamical theory of X-ray scattering by imperfect crystals with randomly distributed microdefects. Some examples demonstrating possibilities of the developed theory for quantitative characterization of structural imper- fections in real single crystals are represented. In particular, characteristics of the complicated microdefect structures fabricated in various silicon crystals Correspondence author: Stepan Iosypovych Olikhovskii E-mail: olikhovsky@meta.ua Please cite this article as: V. B. Molodkin, S. I. Olikhovskii, E. G. Len, Ye. M. Kyslovskyy, O. V. Reshetnyk, T. P. Vladimirova, B. V. Sheludchenko, O. S. Skakunova, V. V. Lizunov, E. V. Kochelab, I. M. Fodchuk, and V. P. Klad’ko, Dynamical Theory of Triple-Crystal X-ray Diffractometry and Characterization of Microdefects and Strains in Imperfect Single Crystals, Metallofiz. Noveishie Tekhnol., 38, No. 1: 99—139 (2016), DOI: 10.15407/mfint.38.01.0099. Металлофиз. новейшие технол. / Metallofiz. Noveishie Tekhnol. 2016, т. 38, № 1, сс. 99—139 / DOI: 10.15407/mfint.38.01.0099 Оттиски доступны непосредственно от издателя Фотокопирование разрешено только в соответствии с лицензией 2016 ИМФ (Институт металлофизики им. Г. В. Курдюмова НАН Украины) Напечатано в Украине. 100 V. B. MOLODKIN, S. I. OLIKHOVSKII, E. G. LEN et al. grown by Czochralski technique and floating-zone melting method are deter- mined by analytical treatment of the measured TCD profiles, rocking curves, and reciprocal space maps. Key words: dynamical scattering, triple-crystal diffractometer, double-crystal diffractometer, microdefects. В роботі представлено короткий огляд основних принципів, що використо- вуються при одержанні аналітичних виразів для когерентної та дифузної інтенсивностей розсіяння, виміряних трикристальним дифрактометром (ТКД). Одержано точні аналітичні вирази для дифузних компонент як ТКД- профілів, так і мап оберненого простору, виміряних у геометрії дифракції за Бреґґом для кристалів, які містять мікродефекти декількох типів. Ці фор- мули одержано при використанні узагальненої динамічної теорії розсіяння Рентґенових променів неідеальними кристалами з випадково розподілени- ми мікродефектами. Представлено деякі приклади, які демонструють мож- ливості розробленої теорії для кількісної характеризації недосконалостей структури в реальних монокристалах. Зокрема, шляхом аналітичного обро- бляння виміряних ТКД-профілів, кривих відбивання і мап оберненого прос- тору визначено характеристики складних структур мікродефектів, створе- них у кристалах силіцію методами Чохральського і зонного топлення. Ключові слова: динамічне розсіяння, трикристальний дифрактометр, двок- ристальний дифрактометр, мікродефекти. В работе представлен краткий обзор основных принципов, используемых при получении аналитических выражений для когерентной и диффузной интенсивностей рассеяния, измеряемых трёхкристальным дифрактомет- ром (ТКД). Получены точные аналитические выражения для диффузных компонент как ТКД-профилей, так и карт обратного пространства, изме- ренных в геометрии дифракции по Брэггу для кристаллов, содержащих микродефекты нескольких типов. Эти формулы получены при использова- нии обобщённой динамической теории рассеяния рентгеновских лучей не- идеальными кристаллами со случайно распределёнными микродефектами. Представлены некоторые примеры, демонстрирующие возможности разра- ботанной теории для количественной характеризации несовершенств структуры в реальных монокристаллах. В частности, путём аналитической обработки измеренных ТКД-профилей, кривых отражения и карт обратного пространства определены характеристики сложных структур микродефек- тов, созданных в кристаллах кремния методами Чохральского и зонной плавки. Ключевые слова: динамическое рассеяние, трёхкристальный дифракто- метр, двухкристальный дифрактометр, микродефекты. (Received November 10, 2015) 1. INTRODUCTION Modern growth technologies provide producing nearly perfect single DYNAMICAL THEORY OF TRIPLE-CRYSTAL X-RAY DIFFRACTOMETRY 101 crystals and crystalline devices. The existing level of growth tech- niques including ‘defect engineering’ allows for purposeful introduc- ing defects in a crystal lattice to satisfy needs for a wide variety of their mechanical, optical, electric, magnetic properties, etc. The non- destructive control of defect structures in such crystal systems is ex- clusively important to control growth processes. The most informative among different physical characterization methods are the X-ray dif- fraction techniques; in particular, those based on measurements of diffraction intensity distributions in the reciprocal lattice space by means of the triple-crystal diffractometer (TCD). The triple-crystal X-ray diffractometry provides the possibilities of very complete and precise characterization of both structural defects in crystal bulk and strains in disturbed surface layers [1—12] as well as chemical compositions and strain distributions in thin film structures, multilayer systems, superlattices, etc. [13, 14]. However, at the analy- sis of TCD measurements, the consideration is usually restricted to the investigation of the diffuse scattering intensity distributions only in those regions where the coherent component of the diffraction intensi- ty can be neglected, or this component can be subtracted by using the equations for perfect crystals. Similarly, the attenuation of coherent scattering intensity due to diffuse scattering from defects is as rule neglected. Such kind approaches can lead to systematic errors when determining the characteristics of crystal structure imperfections. Strongly speaking, the more rigorous treatment of the diffraction patterns measured by TCD requires the joint consideration of the su- perimposed coherent and diffuse scattering intensity distributions. This implies also the account for dynamical effects in diffuse scatter- ing intensity and diffuse scattering effects in coherent intensity dis- tributions. Such self-consistent approach in the triple-crystal X-ray diffractometry [15—19], which is necessary for the reliable quantita- tive characterization of defects and strains in crystals, was conse- quently developed on the base of the generalized dynamical theory of X-ray scattering by imperfect crystals with randomly distributed mi- crodefects [20—22]. The purpose of this article is reviewing basic principles of the gener- alized dynamical theory of X-ray diffraction by crystals with chaoti- cally distributed microdefects and the description of corresponding analytical expressions for diffraction profiles and reciprocal lattice maps measured by TCD. Also, the application of these theoretical re- sults on some examples demonstrating possibilities of the developed theory for quantitative characterization of structural imperfections in real single crystals will be represented. Below, the basic principles of the generalized dynamical theory of X- ray scattering by imperfect single crystals with randomly distributed microdefects will shortly be stated and the analytical expressions for 102 V. B. MOLODKIN, S. I. OLIKHOVSKII, E. G. LEN et al. the differential dynamical coherent and diffuse scattering amplitudes in such crystals will be given in Sect. 2. Various methods of triple- crystal X-ray diffractometry, which are based on this theory, such as reciprocal space mapping, differential-integral method, and separa- tion of coherent and diffuse components of integrated diffraction in- tensity will be described in Sect. 3. Examples of the quantitative char- acterization of microdefect structures in various silicon crystals will be given in Sect. 4. 2. DIFFERENTIAL REFLECTIVITY OF SINGLE CRYSTALS WITH MICRODEFECTS 2.1. Basic Assumptions of the Generalized Statistical Dynamical Theory The polarizability (r) of a crystal with random distribution of defects is a non-periodic function which can be represented as Fourier integral over the whole momentum space. Then, from Maxwell’s equations af- ter the Fourier transformation at ||  1, the set of basic equations of dynamical theory for the imperfect crystal in momentum space can be derived [21]: 2 2 χ( ) ,K k       k G q k G q G q D k k D 0 (1) where K  2/ is the modulus of the wave vector K of the incident plane wave,  is the X-ray wavelength, Dq and q are Fourier compo- nents of electric induction and crystal polarizability, respectively, G runs over all reciprocal lattice vectors, and q and k run over N discrete values in first Brillouin zone (N is the number of crystal lattice points). This set consists of an infinite number of linear algebraic equations for an infinite number of unknown amplitudes of coherent and diffusely scattered plane waves within the crystal. The set of basic equations (1) is valid only for the homogeneous ran- dom distribution of microdefects. Such distribution provides the equivalence of averaging over crystal lattice points and averaging over defect ensemble as well as the translation invariance of the ensemble- averaged polarizability: 0 ( ) ( ) exp( ),s i       G G r R r Gr (2) where corner brackets denote the ensemble averaging, 0 s sR R are the average lattice vectors (s runs over N lattice points), and G are the corresponding 2 times reciprocal lattice vectors. Fourier component of polarizability in Eq. (2) is equal to 0 E  G G , if the changes of struc- DYNAMICAL THEORY OF TRIPLE-CRYSTAL X-RAY DIFFRACTOMETRY 103 tural factors of unit cells due to static distortions can be neglected. Here, 0G is the Fourier component of the perfect crystal polarizability and the static Krivoglaz—Debye—Waller factor is defined as exp( ) exp( ( )) ,sE L i   G Gu R where the static displacement field 0( ) s s s  u R R R can be described at the small concentration of random- ly distributed defects c  1 by the superposition of static displace- ments of matrix atoms U(r), which are caused by a single defect [23]: ( ) ( ) ( ). s t s t t c c  u R U R R (3) The random occupation numbers ct are equal to 1, if the lattice point with radius-vector 0 t R is occupied by the centre of a microdefect, and 0, if not. The averaging is performed just over these random numbers for which .tc c Thus, the total polarizability of the crystal with randomly distribut- ed microdefects can be represented as the sum of average and fluctuat- ing (random) parts, i.e. ( ) ( ) ( ),    r r r (4) where ( ) r is described by Eq. (2). Similarly, the wave field in the crystal can be subdivided into average and fluctuating parts: ( ) ( ) ( ),  D r D r D r (5) which correspond to coherent and diffusely scattered waves, respec- tively: ( ) e e , i i  0K r Gr G G D r D (6) ( ) ( ) e e , i i       0K r G q r G q G q 0 D r D (7) where the constant wave vector K0 of the transmitted coherent plane wave in crystal has been introduced for the sake of convenience in sub- sequent consideration. In the two-beam case of diffraction, only two so-called strong Bragg (coherent) waves are excited in the crystal and, consequently, in Eqs. (1) as well as in Eqs. (6) and (7) only two amplitudes of coherent waves (DG) and corresponding 2N amplitudes of diffusely scattered waves (DGq) with G  0 and H should be retained, whereas the rest of ampli- tudes of (weak) Bragg and diffusely scattered waves can be neglected. The infinite equations set (1) can be represented then for each of two ( and ) polarization states as two equation sets, namely, one for two amplitudes of coherent transmitted (D0) and diffracted (DH) plane 104 V. B. MOLODKIN, S. I. OLIKHOVSKII, E. G. LEN et al. waves with wave vectors k  K0 and k  KH  K0  H, respectively, and another one for 2N amplitudes of transmitted (Dq) and diffracted (DHq) diffuse plane waves with wave vectors k  K0q  K0  q and k  KHq  KH  q, respectively. These sets of coupled equations can be decoupled and solved by using the perturbation theory. [21, 22] if inequalities hold for the dispersion corrections to the wave vectors of coherent and diffusely scattered waves, respectively, which describe the attenuation of these waves due to diffuse scattering: ( ) , ( , ) ,E E           GG H GG H (8) where dispersion corrections are defined as quadratic combinations of Fourier components of the fluctuating part of crystal polarizability,  and  are the angular deviations of the wave vectors of coherent and diffusely scattered waves from their exact Bragg conditions, G and G  0 or H. The dispersion corrections to the wave vectors of coherent and dif- fusely scattered waves describe the dynamical effects of influence of the elastic diffuse scattering from defects through virtual ( , )P P   GG GG and energy-conserved ( , )     GG GG scattering channels on the angular redistribution and attenuation of the coherent and diffusely scattered intensity, respectively: ( ) ( ) ( ) / ,P i K           GG GG GG (9) ( , ) ( , ) ( , ) / ,P i K                   GG GG GG (10) where  and   1, 2 numerate coherent and diffuse wave fields, respec- tively, and the quantities ( )P P   GG GG and ( )     GG GG are of the same or- der of magnitude. In the derivation of compact analytical expressions for the diffuse scattering intensity, the inequalities were taken into account: ,             q q q q H q H q H (11) where  G H (G  0,  H) are fluctuating Fourier components of crystal polarizability. These inequalities are valid for typical microdefects at sufficiently small q  H. 2.2. Differential Reflectivity of Imperfect Single Crystals The differential intensity of X-ray scattering by the imperfect single crystal containing homogeneously distributed microdefects can be rep- resented as the sum of coherent or Bragg (RB) and diffuse (RD) compo- DYNAMICAL THEORY OF TRIPLE-CRYSTAL X-RAY DIFFRACTOMETRY 105 nents (see Refs. [20—22]): RS(k)  RB(k)  RD(k), (12) where k  K  K  H is the deviation of the wave vector K of the scat- tered plane wave from the reciprocal lattice point H, which corre- sponds to the reciprocal lattice vector H, and K is the wave vector of the incident plane wave. The coherent component of the crystal reflectivity has the form B coh ( ) ( , ) ( ) ( ),R R b           k (13) 2 coh ( ) ( ) ,R r   (14) where (x) is Dirac’s -function,  and  are the angular deviations of the wave vectors of incident and scattered plane waves in the hori- zontal plane from the directions satisfying exactly the Bragg condi- tion, 1 | |b   0 H is the parameter of diffraction asymmetry, 0  sin(B  ) and H  sin(B  ) are direction cosines relatively to the inner normal n to the entrance crystal surface for wave vectors K and K, respectively,  is the angle between surface and reflecting planes of the crystal, В is the Bragg angle,  and  are the angular de- viations of the wave vectors K and K from the horizontal plane, re- spectively. 2.2.1. Coherent Component of Reflectivity of Imperfect Crystal According to the generalized dynamical theory of the X-ray scattering in imperfect single crystals [21, 22], the amplitude reflection coeffi- cient in Eq. (14) can be written for each polarization state ( and ) in the form: 1 2 2 ( ) 1ctg( 1) ,r y i y A y           (15) where the notation was used: / , / ,A t        0 H (16) 1 2( )( ) , ( )( ) ,CE CE CE CE                 H H0 H 0H H H0 H 0H with t and  being the crystal thickness and extinction length, respec- tively, and C is the polarization factor equal to 1 or cos(2B) for - and -polarization states, respectively. The normalized angular deviation of the crystal is defined as 0 B ( ) / , sin(2 ),y b         (17) 106 V. B. MOLODKIN, S. I. OLIKHOVSKII, E. G. LEN et al. 0 0 0 2 ( ) / .b         HH 00 In the limiting case of the thick crystal, i.e., when 0t  1, where 0 is the linear coefficient of photoelectric absorption, Eq. (15) can be simplified to the form: 1/2 2( ) ( 1),r y s y     (18) where s  sgn(yr), yr  Re(y). It should be remarked that the dispersion corrections to the wave vectors of coherent and diffusely scattered waves, which appeared in Eq. (15) to (18) and describe the attenuation of these waves due to dif- fuse scattering, are connected immediately with the coefficient of ab- sorption due to diffuse scattering, ds(): ds ( ) ( ), ( ) ( ),b            HH 00 HH (19) 1 ( ) ( ), ( ) ( ).P K P bP            HH HH 00 HH In turn, this coefficient is related to the correlation function S(q) describing the differential distribution of diffusely scattered waves: 2 ds 2 ( ) d ( ), 4 C V S     k q (20) where the integration is performed over the plane tangent to Ewald sphere near the reciprocal lattice point considered. The correlation function in Eq. (20) is defined as follows: ( ) Re ,S     q H q Hq (21) where q  k  iin, and i is the limiting value of an interference absorp- tion coefficient at  and .   It should also be noted that the non-diagonal dispersion corrections to the wave vectors of coherent waves can be neglected for typical mi- crodefects with radii significantly smaller than extinction length: ( ) ( ) 0, ( ) ( ) 0.P P          0H H0 0H H0 (22) The relations for the dispersion corrections to the wave vectors of diffusely scattered waves are similar to those described above in Eqs. (19) to (22) for the dispersion corrections to the wave vectors of coher- ent waves. Thus, the complex dispersion corrections due to diffuse scattering and static Krivoglaz—Debye—Waller factor do account for diffuse scat- tering effects in the coherent component of the crystal reflectivity and DYNAMICAL THEORY OF TRIPLE-CRYSTAL X-RAY DIFFRACTOMETRY 107 establish its relation to defect characteristics. 2.2.2. Influence of Distorted Thin Surface Layer Disturbed or distorted surface layers often are present in crystals with strains caused by artificial modification [3, 5, 23] or natural relaxa- tion, particularly, due to ‘mirror image forces’ from point defects [24, 25] and microdefects [20, 26]. The coherent component of amplitude reflectivity of an imperfect crystal with defects and disturbed surface layer can be found from the reduced Takagi—Taupin equation for the case of an arbitrary (but not fluctuating) one-dimensional strain field [18]: 2 2 1, dX i X X dZ      (23) 1/2 0 ( ) ( ) / , ( )/ ,X z b D D Z z d     H (24) with the boundary condition X(d)  X0, where d is the layer thickness and z  0 corresponds to the crystal surface. The equation (23) should be modified by renormalizing variables and replacing diffraction pa- rameters for perfect crystal by those for imperfect crystal with defects to account for the presence of randomly distributed Coulomb-type de- fects in the layer and substrate, namely: S S S S B , / , sin(2 ),y y y b          (25) 2 2 B ( cos sin ) tan ( ) sin cos sgn(1 ),b                 (26) where  and  are normal and parallel strain components, respective- ly. The corresponding boundary condition has the form: 1/2 0 ( ) ( ),X d X r    (27) where the amplitude reflectivity of substrate is described by Eq. (15). For the sufficiently thin disturbed surface layer whose thickness is significantly smaller as compared with extinction length, i.e., d  Re(), the dynamical effects of coherent scattering can be neglect- ed and corresponding quadratic term in the Takagi—Taupin equation (15) can be dropped: 2 1. dX i X dZ    (28) Then, the coherent component of amplitude reflectivity of the imper- 108 V. B. MOLODKIN, S. I. OLIKHOVSKII, E. G. LEN et al. fect crystal with defects and disturbed surface layer with constant strain can be found in kinematical approximation: 2 2 0 1 ( ) . 2 i Z i Z e X z X e        (29) It is obvious that representation of the strain in disturbed layer by one-step profile is rather a rough model. More realistic is the model presented by the multi-step strain profile which corresponds to so- called ‘layer approximation’. For the multilayer structure with con- stant average strain i in each layer of thickness ti, the solution of Eq. (28) can be easily found by iteration. The iteration procedure is per- formed by using the solution (29) for the first layer adjacent to the substrate as the boundary condition for equation in the second layer, etc. As result, we obtain the coherent component of reflectivity of the imperfect crystal with defects and inhomogeneous disturbed surface layer: 2 0 int kin coh coh coh coh (0) ,R X R R R     (30) 20 coh 0 0 exp( 2Im ),R X    (31) int * coh kin 0 0 2 Re exp( ) ,R X X i     (32) 2kin coh kin ,R X  (33) kin 1 1 exp(2 ) e , 2 j N i j j j j i T X       where the notation was used (N is the number of sublayers in the dis- turbed layer): 1 2 , 0, 1, 0, / , N j i i N i i i j T j N T t             (34) i S S S S B , / , sin(2 ), i i i i iy y y b          (35) 2 B ( cos sin ) tan ( ) sin cos sgn(1 ). i i i i i b                 (36) It should be emphasized that Eqs. (30) to (36) for the coherent com- ponent of reflectivity of the imperfect crystal with defects and inho- mogeneous disturbed surface layer provide the possibility for account- ing the influence of not only randomly distributed microdefects in crystal bulk but also subsurface strains caused by artificial modifica- tion or natural relaxation, particularly, due to ‘mirror image forces’ from point defects. DYNAMICAL THEORY OF TRIPLE-CRYSTAL X-RAY DIFFRACTOMETRY 109 2.2.3. Diffuse Component of Imperfect Crystal Reflectivity The diffuse component of the dynamical differential reflection coeffi- cient of imperfect crystal with randomly distributed microdefects has the form [22]:   2 D 2 0 0 , ( ) , f R S E    H K K k (37) where ( , )f  H K K is the diffuse scattering amplitude, and S is the illu- minated area of the entrance crystal surface, E0 is the amplitudes of incident plane wave in vacuum. The diffuse scattering amplitude in Eq. (37) is formed by contributions from partial diffuse scattering am- plitudes ( , )F  HG K K describing the scattering of coherent waves ( )D G K into diffuse ones: ( , ) ( ) ( , ),f D F    H G HG G K K K K K (38) where   1, 2 and G  0, H. In the limiting case of the thick crystal, the expression (37) can be reduced to the form: 2 2 2 D dyn 0 1 ( ) , 4 CVK R F S         H q k (39) where V is the crystal volume, the factor Fdyn describes the modulation of diffuse scattering intensity caused by the dynamical interference of strong Bragg waves, Hq is the Fourier component of the fluctuation part of the crystal polarizability, and the interference absorption coef- ficient i in the complex momentum transfer q  k  iin describes the extinction effect for diffusely scattered waves. The diffuse component of the differential crystal reflectivity can be written after averaging over random distribution of defects as follows: 1 2 D ( ) ( ),R MK F k q (40)     2 2 2 0 0 0 c 1 i i ( ) / , ( ) /4, ( ) 1 exp( 2 ) 2 , M cm C E p t t m v H p t t t             H where c is the concentration of randomly distributed microdefects per one lattice site, vc is the unit cell volume, and t is the crystal thickness. Function F(q) in Eq. (40) for momentum transfers in Huang scatter- ing region, i.e., at k  km  1/Reff, where Reff is an effective radius of defect [22], can approximately be written in the form: 110 V. B. MOLODKIN, S. I. OLIKHOVSKII, E. G. LEN et al. 2 0H 2 1 2 34 2 1 1 ( ) ( ) ,F F H B B HB            H q q q qq q (41) where the effective radii of defects are defined as 1/2 eff C ( )R E HA and 1/2 eff L ( )R ER H b for clusters and dislocation loops, respectively, AC is the cluster strength, b is the Burgers vector, RL is the dislocation loop radius, and H0  H/H is a unit vector. Constants В1 and В2 are de- fined for spherical clusters as follow: 2 3 1 1 2 C c C C 0, (4 / ) , , (1 )(1 ) /3,B B A v A R            (42) where  is the strain at cluster boundary, RC is the cluster radius,  is the Poisson ratio. For circular dislocation loops, the definitions are fol- lowing: 2 2 2 2 1 L c 2 1 4 1 ( / ) , , (3 6 1) /(1 ) . 15 4 B R v B B           b (43) The constant B3 in Eq. (41) can be put equal to 1/2 3 2 /B L B c H , where for clusters B  B2 and for dislocation loops B  B1. For the Stockes—Wilson scattering region (k  km), the function F(q) should be rewritten as follows [22]: S W H 2 2 2 2 m i i ( ) ( ) ( )( )/( ),F F F k k     q q q (44) where the antisymmetric term with B3 coefficient from Eq. (41) should be dropped. The expressions (40) to (44) for the diffuse component of reflectivity are valid at arbitrary radii of microdefects (up to the extinction length and larger) and in the whole angular range including the total reflec- tion range due to the account for multiple diffuse scattering processes. Also, these expressions can be used with some precautions to describe contributions from thermal diffuse scattering and diffuse scattering from point defects (see, e.g., Refs. [27, 28]). 3. METHODS OF TRIPLE-CRYSTAL X-RAY DIFFRACTOMETRY 3.1. Reciprocal Space Mapping 3.1.1. Coherent Component of Reciprocal Space Map The X-ray diffraction intensity from imperfect crystal with defects, which is registered by TCD detector, is the sum of coherent and diffuse components; both reflected from third crystal-analyser and integrated DYNAMICAL THEORY OF TRIPLE-CRYSTAL X-RAY DIFFRACTOMETRY 111 over horizontal and vertical divergence [15—19]: coh diff ( , ) ( , ) ( , ).I I I          (45) This intensity depends only on two angular variables, namely, the an- gular deviations of investigated crystal () and analyser-crystal () from their exact reflecting positions (Fig. 1). In the case of quasi-non-dispersive geometry (m, n, m) of the opti- cal scheme used conventionally, the coherent component of the intensi- ty measured by TCD can be represented in the form [18]: 1 1 1 coh 0 M M S coh S A ( , ) { [ ( ) ]} [ ( )] ( ),I I dxR b b x R b x R x                  (46) where I0 is the incident X-ray intensity, RM and RA are reflection coef- ficients of flat or grooved monochromator and analyser crystals, bM and bS are asymmetry parameters of monochromator and investigated crystal, respectively. If structural defects are present in monochroma- tor and analyser crystals, their reflection coefficients also consist of coherent and diffuse components similarly to that of the investigated crystal: M,A M,A M,A coh diff ( ) ( ) ( ),R x R x R x  (47) Fig. 1. Scheme applied for mapping the coherent and diffuse scattering inten- sity distributions in reciprocal space by using TCD measurements at Bragg diffraction geometry. The notation: X–X-ray tube, M–monochromator, S– investigated crystal, A–analyser, D–detector, K0 and KH–wave vectors of incident and diffracted waves, respectively, H–reciprocal lattice vector,  and –angular deviations of S and A crystals from their exact reflecting positions, respectively, q and q –orts of the oblique coordinate system [29]. 112 V. B. MOLODKIN, S. I. OLIKHOVSKII, E. G. LEN et al. where diffuse components of reflection coefficients RM and RA are de- scribed by expressions like Eq. (40). When the multiple reflections are used in monochromator and analyser crystals (Fig. 2), the diffuse com- ponents of monochromator and analyser reflection coefficients are strongly suppressed and can be neglected. However, in the case of flat monochromator and analyser crystals these diffuse components can substantially modify observed diffraction patterns [15—17, 30, 31]. 3.1.2. Diffuse Component of Reciprocal Space Map The diffuse component of the diffraction intensity measured by TCD can be represented in the form [19, 32]: diff 0 M diff A ( , ) ( ) ( ) ( ),I I dxR x dx r R x               (48) where the function rdiff represents the diffuse component of differen- tial reflection coefficient (40) integrated over a vertical divergence: 1 diff D ( ) ( ). y r K dk R  k (49) Here, k    kyey, components kx and kz of the vector   kxex + kzez lie in the coherent scattering plane (K, H), ey is a normal to this plane, ez  n, and components kx and ky lie in the crystal surface. The components kx and kz are connected by simple relationships with angular deviations of wave vectors of incident (x) and scattered (x) plane waves from their exact Bragg directions in the scattering plane. In the case of the asymmetric Bragg diffraction geometry these rela- tionships have the form: Fig. 2. Scheme used in the typical TCD with the multiple reflections in grooved monochromator (М1, М2) and analyser (A) crystals at Bragg diffrac- tion geometry on the investigated crystal (S) [32]. DYNAMICAL THEORY OF TRIPLE-CRYSTAL X-RAY DIFFRACTOMETRY 113 B B B B ( ) sin( ) 2 ( ) sin cos , ( ) cos( ) 2 ( ) sin sin . x z k K x x K x k K x x K x                       (50) If the half-width of the function rdiff is much larger as compared with half-widths of reflection coefficients of monochromator and ana- lyser crystals, the functions RM and RA in Eq. (48) can be replaced by - functions: diff 0 iM iA diff ( , ) ( , ),x zI I R R r k k   (51) where RiM and RiA are integrated reflectivities of monochromator and analyser crystals, and components kx and kz are described by expres- sions: B B B B sin( ) 2 sin cos , cos( ) 2 sin sin . x z k K K k K K                     (52) Now, after integrating in Eq. (49) over vertical divergence, the dif- fuse component of the reciprocal space map for imperfect crystals with randomly distributed microdefects can be represented in the Huang scattering region (  km) as follows: diff H S W a ( ) [ ( ) ( ) ( )],r M A A A      (53) 2 2 m H 1 2 2 2 2 2 i i ( ) (2 ) arctan , kK A B B a              20 2 2 i a     H   , (54) m m mm S W 1 2 2 2 i 2 2 2 2 2 22 2 i 22 2 2 2 2 2 2 2 i i i i 3 ( ) 4 arctan , 2 2 K A B B a k k kk K B a                                             (55) 2 2 2 2 2 22 2 m i m mm i a 3 2 22 2 2 2 2 2 im i m m i ( ) ln 2 1 . k k kkK A B H k k k                              (56) Similarly, in the Stokes—Wilson scattering region (  km), we obtain: diff S W ( ) ( ),r MB   (57) 2 m S W 1 22 2 3 2 i 3 ( ) . 22( ) Kk B B a B          (58) 114 V. B. MOLODKIN, S. I. OLIKHOVSKII, E. G. LEN et al. The interference absorption coefficient describes the extinction ef- fect for diffusely scattered waves and is given by the relationship: 0 i i i 0 1 ( , ) [ ( ) ( )], 2 2 b E r z r z g         (59) where the notation was used: 2 2 i ( ) ( ) /2,r z u v u   2 2 2 2 2( ) 1, 2( ),u z g E v zgE p        B B r r sin(2 ) ( ) sin(2 ) , ,z b z b C C          H H i0 ir i r i 2 r i0r Re( ) Re( ) Im( ) Im( )1 , , . 2 b b g p C             HH H H H H H  The interference absorption coefficient i plays in Eqs. (53) to (58) a role of the cut-off parameter and removes the non-physical divergence at   0. This coefficient also allows for the correct description of the diffuse component contribution to TCD diffraction profiles in the re- gion of coherent peak, where this contribution is rapidly decreased ap- proximately by an order of magnitude. If several types of microdefects are present within the crystal simul- taneously, without mutual correlation, the Eqs. (53) and (57) should be simply replaced by the sum of corresponding expressions for each type of defects. The above consideration allows to describe the complex diffraction patterns measured by TCD from single crystals with complicated de- fect structures and, particularly, to explain the asymmetrical behav- iour of coherent peaks on TCD profiles due to taking into account the influence of microdefects and disturbed layers in monochromator, ana- lyser, and sample crystals. 3.2. Differential-Integral Method The diffraction profiles measured by TCD from the investigated crys- tal, which contains homogeneously distributed microdefects, as func- tions of deviation angle  of the analyser crystal at fixed deviation angle  of the investigated sample are usually consisting of three peaks. Namely, there are observed the main peak at M S (1 ) ,b    pseudo-peak at S    and diffuse peak at 2 D B 2 sin    . A form of the pseudo-peak is determined by the reflection coefficient of the monochromator, whereas the forms of main and diffuse peaks are de- DYNAMICAL THEORY OF TRIPLE-CRYSTAL X-RAY DIFFRACTOMETRY 115 termined by the coherent and diffuse components of the reflection co- efficient of the investigated sample, respectively. These peaks are well separated at sufficiently large deviations  on the sample, which are significantly greater than the width W of its total reflection range. The integrated intensities of coherent (main) and diffuse peaks de- pend only on the angular deviation  of the investigated crystal and are connected unambiguously with the coherent and diffuse compo- nents of the reflection coefficient of this crystal, the sum of which is measured by the double-crystal diffractometer (DCD) with widely open detector window. These connections can be established easily by inte- grating the expressions (46) and (48) over  in the vicinity of points M  and D  . If the condition W  is fulfilled and the peaks are well separated, the corresponding integrals are factorized simply [16]: M 0 iM iA coh ( ) ( ),I I R R R   (60) D 0 iM iA diff ( ) ( ).I I R R R   (61) In Eqs. (60) and (61), the next notation was used: 2 coh ( ) ( ) ,R r   (62) diff diff D ' ( ) ( ) ( ) ( )d , K K R d r R         K k (63) where d  K is a solid angle in K direction, and Rcoh() and Rdiff() de- scribe the coherent and diffuse components of rocking curve measured by DCD [22], respectively. The value of the error made at such factori- zation is of the order of 2 2/| | .W  The ratio of the integrated intensities of coherent and diffuse peaks D M ( ) ( ) / ( ),Q I I    as can be seen from Eqs. (46) and (48), will not depend on the instrumental factors of TCD. After accounting for the summation over X-ray polarizations, this ratio takes the form: diff diff diff diff ( ) ( ) ( ) , ( ) ( ) R R Q R R               (64) where M A B B cos(2 ) cos(2 ) ,    M B  and A B  are the Bragg angles of mon- ochromator and analyser, respectively. When obtaining the formula (64), it was supposed that the approximate relationships hold M iM B iM cos(2 )R R   and A iA B iA cos(2 )R R   . The diffuse component of the reflection coefficient of the crystal with homogeneously distributed defects after the integration over output angles can be represented as follows [22, 28]: ds diff dyn 0 ( ) ( ) ( ) , 2 ( ) R F         (65) 116 V. B. MOLODKIN, S. I. OLIKHOVSKII, E. G. LEN et al. where the dependence of the interference absorption coefficient i on exit angles  was neglected because its influence is smoothed due to integration, and thus i in Eq. (59) can be replaced by its limiting value at W  : 0 i i 0 1 ( ) 1 ( ) / . 2 2 b Er z g           (66) The absorption coefficient due to diffuse scattering from microde- fects in Eq. (65) is described by the expression: 2 2 ds 0 0 0 ( ) ( ),k cC E m J k  (67) H 0 H SW 0 H 0 0 m 0 SW 0 0 m ( ) ( ) ( ), at , ( ) ( ), at ; J k J k J k k k J k J k k k        (68) here, 0 B sin(2 ).k K   The angular dependence of the ‘integral’ diffuse scattering intensity in the Huang scattering region is described by sym- metric (JH) and antisymmetric ( H J ) components in Eq. (68) as follows: 2 2 2 2m H 0 2 3 0 42 2 2 2 2 2 0 m 0 1 1 ( ) ln ( ) , k J k b b k b k k k                (69) 2 2 3 0 4 H SW 0 2 2 2 m 1 ( ) , 2 b k b J k b k        (70) 2 22 2 3 0 4m SW 0 22 2 2 2 0 0 1 ( ) , 2 b k bk J k b k k            (71) 2 2 2 2 H 0 1 m 0 ( ) ( ).J k b k k      (72) The coefficients ( 1,4) i b i  in Eqs. (69)—(72) are connected with char- acteristics of microdefects by relations: 2 2 1 2 1 2 B 4 , ( cos )/2, L B b b B B cH    H (73) 2 2 2 2 3 2 B B 4 2 B ((cos )/2 sin ), ((cos )/2 cos ).b B b B        It should be remarked that the absorption coefficient due to diffuse scattering in the above equations is the sum of corresponding coeffi- cients in the case of several randomly distributed defect types. Similar superposition law is supposed to be valid for the exponent of static Krivoglaz—Debye—Waller factor as well. The last is also immediately connected with defect characteristics by following relationships for DYNAMICAL THEORY OF TRIPLE-CRYSTAL X-RAY DIFFRACTOMETRY 117 dislocation loops and spherical clusters, respectively [24, 33]: 3 3/2 L L 1 ( ) 2 L n R Hb H , (74) C C C C 4 0 3 0 0.525 , 1.9, , 1.9, n v n L n v n         H (75) C C 3 0 c 4 R R , , 3 H n v       where nL  cL/vc and nC  cC/vc are number densities of dislocation loops and spherical clusters, respectively. The above-written formulas establish analytical relations between coherent and diffuse components of the reflection coefficients meas- ured by high-resolution double- and triple-crystal diffractometers from imperfect crystals in Bragg diffraction geometry, on the one hand, and statistical characteristics of defects, on the other hand. Thus, a closed set of the analytical relationships is formed which can provide the self-consistent dynamical description and quantitative analysis of the rocking curves and diffraction profiles measured by the high-resolution double- and triple-crystal diffractometers, respectively, from imperfect crystals containing randomly distributed defects of sev- eral types to determine more reliably their structural characteristics. 3.3. Separation of Coherent and Diffuse Components of Integrated Diffraction Intensity The investigation of crystal imperfections by using measurements of the integrated X-ray diffraction intensities has a number of advantages such as rapidity, high sensitivity, and simple data treatment. The mul- ticrystal arrangements provide the unique possibility to separate the coherent and diffuse components of the integrated diffraction intensity from imperfect crystals containing randomly distributed defects and thus to enhance the sensitivity to defect characteristics due to their di- rect connections with the integrated diffuse component [34, 35]. In particular, the experimental TCD setup has been proposed for di- rect measurements of the integrated diffuse component at Laue dif- fraction geometry on the investigated crystal [36]. In this setup (Fig. 3, a), the mutual disorientation of monochromator and sample crystals has been used to screen the X-rays exciting the coherent component of scattering intensity in the sample under investigation. In another pro- posed TCD setup (Fig. 3, b), the thin analyser crystal set in the exact Bragg reflection geometry was used as screen for the coherent compo- nent of diffraction intensity from the sample whereas the diffuse com- 118 V. B. MOLODKIN, S. I. OLIKHOVSKII, E. G. LEN et al. ponent was transmitted to the detector [37]. 4. CHARACTERIZATION OF DEFECTS AND STRAINS IN SINGLE CRYSTALS BY USING TCD 4.1. Defect Structure of Annealed Czochralski-Grown Silicon Crystal 4.1.1. Annealing at High Temperatures A) Anneal at 1100C during 40 min and 5.5 h. The two investigated samples of 1 mm thickness with (100) surface orientation were cut from Czochralski-grown silicon (Cz-Si) ingot of n-type conductivity (10 cm) with initial oxygen concentration about 1018 cm 3. The sam- ples were annealed in wet oxygen atmosphere at 1100C during 40 min and 5.5 h. As known, the enhanced oxygen precipitation is occurred in the silicon samples at such conditions of the thermal treatment. Measurements of diffraction profiles (see Fig. 4) were carried out by using the non-dispersive TCD scheme with flat monochromator and a b Fig. 3. TCD schemes used to measure separately the coherent (a) and diffuse (b) components of total integrated reflecting power at Laue X-ray diffraction geometry on the investigated crystal (S) [36, 37]. DYNAMICAL THEORY OF TRIPLE-CRYSTAL X-RAY DIFFRACTOMETRY 119 analyser silicon crystals (see Fig. 1) and the samples were set in the symmetrical Bragg diffraction geometry [15]. The measured profiles showed the high and narrow diffuse peaks located at   0 and evi- denced for the existence of strong diffuse scattering from large oxygen precipitates. Moreover, the analysis of these profiles led to the necessi- ty for accounting the influence of the loose precipitate interface creat- ed by emitted silicon interstitials and like that described recently in the experimental investigation of oxygen precipitation in highly bo- ron-doped Cz-Si [38]. In the case of clusters with loose interface, the diffuse component of the differential crystal reflectivity (40) can be modified according to the model proposed by Krivoglaz as follows [15, 24 ]: 2 D ( ) ( ) ( ) ,R F sk q k (76) where the Fourier component of the ellipsoidal cluster form-factor is described by the expression: 2 2 0 c , , 1 ( ) exp , 2 i i i x y z s n v k R         k (77) 3/2 0 c (2 ) / , x y z n R R R v  and Ri are the lengths of ellipsoid semi-principal axes. After integrat- ing Eq. (76) over vertical divergence, the diffuse component of the dif- fraction profiles for imperfect crystals with randomly distributed el- lipsoidal microdefects having the loose interface can be approximately described by the following expression: 2 2 2 2 diff diff ( , ) ( , ) exp( ), x z x x z z I r k k k R k R     (78) Fig. 4. Measured and calculated diffraction profiles (dashed and solid lines, respectively) measured by TCD from Cz-Si samples annealed at 1100C during 40 min (a, b) and 5.5 h (c) for Si(004) reflection of MoK-radiation [15]. 120 V. B. MOLODKIN, S. I. OLIKHOVSKII, E. G. LEN et al. where rdiff(kx, kz) is given by Eq. (53). The fit of the measured diffraction profiles was performed to achieve coincidence of heights and positions of main, pseudo-, and dif- fuse peaks at measured and calculated curves by varying oxygen pre- cipitate radii, concentration, and the static Krivoglaz—Debye—Waller factor. The treatment of the diffraction profiles measured from the sample annealed during 40 min (Fig. 4, a and b) has given the following values: Rx  Ry  13 nm and Rz  650 nm, with small differences in c(AC/vc) 2  1.410 6 and E  0.7 for the profile shown in Fig. 4, a and c(AC/vc) 2  2.210 6 and E  0.6 for the profile shown in Fig. 4, b. The treatment of the diffraction profiles measured from the sample an- Fig. 5. Measured (left) and calculated (right) reciprocal space maps for the Cz-Si sample annealed at 1150C during 50 h, Si(111) reflection, CuK-radiation [39]. Fig. 6. Measured and calculated diffraction profile (markers and solid line, respectively) from Cz-Si sample annealed at 1150C during 50 h, Si(111) re- flection, CuK-radiation [39]. DYNAMICAL THEORY OF TRIPLE-CRYSTAL X-RAY DIFFRACTOMETRY 121 nealed during 5.5 h (Fig. 4, c) has given the following values: Rx  Ry   260 nm, Rz  1300 nm, c(AC/vc) 2  2.510 6, and E  0.4. The remained visible discrepancies between measured and calculated diffraction pro- files can be caused by the existing spread of oxygen precipitate radii and ignoring instrumental factors. B) Anneal at 1150C during 50 h. The investigated sample was cut from Cz-Si ingot and annealed in argon atmosphere at 1150C during 50 h. The measurements of reciprocal space maps (Fig. 5) were per- formed by using the diffractometer PANanalytical X`Pert Pro MRD XL at symmetrical Si(111) reflection on the sample in Bragg diffrac- tion geometry of characteristic CuK1-radiation (see Fig. 2). Additionally, the measurements of diffraction profiles (Fig. 6) were performed in the non-dispersive scheme of the home-made TCD with a higher resolution at symmetrical Si(111) reflections in Bragg diffrac- tion geometry of characteristic CuK1-radiation on all three flat crys- tals [39]. To describe defect structure in the investigated Cz-Si sample, the model was used supposing the presence of two microdefect types (see, e.g., Ref. [40]), namely, the spherical amorphous oxygen precipi- tates SiO2 (radius RP, thickness hP, and number density nP) and circular dislocation loops with Burgers vector b  <110>/2 (radius RL and num- ber density nL). As can be seen from Table 1, the characterization results obtained from the reciprocal space map coincide sufficiently well for predomi- nant type of defects (large dislocation loops) with those obtained from the set of diffraction profiles measured by the home-made TCD one of which is shown in Fig. 6. Some discrepancy in the concentration can be explained by the presence of smaller dislocation loops and oxygen pre- cipitates, which also give contributions to the diffraction pattern. The detailed quantitative characterization of small oxygen precipitates and dislocation loops was possible due to additional using the set of diffrac- tion profiles measured by the home-made TCD (see also Ref. [41]). It should be emphasized that the exclusively important factor for the reliable determination of characteristics of these defects was the use of the generalized dynamical theory, which permits determining simultaneously a set of defect characteristics due to the self-consistent TABLE 1. Radii and number densities of spherical oxygen precipitates and circular dislocation loops in Cz-Si sample annealed at 1150C during 50 h [39]. Data type RP, nm nP, cm 3 RL, m nL, cm 3 Profile 10  1 (1.0  0.1)1013 0.05  0.005 0.3  0.03 5.0  0.3 (8.0  2)1011 (9.0  3)109 (4  0.5)107 Map — — 4.3  0.6 (1.9  1)108 122 V. B. MOLODKIN, S. I. OLIKHOVSKII, E. G. LEN et al. consideration of both diffuse and coherent components of diffraction patterns. The availability of the explicit analytical expressions for dif- fuse scattering intensity, which take the anisotropy of displacement fields around dislocation loops with discrete orientations into account [39], was also important. C) Anneal at 1160C during 50 h. The investigated Si single crystal was cut from Cz-Si ingot with p-type conductivity (  10 cm) and initial oxygen concentration about 1.11018 cm 3. The sample of 478 m thick- ness was annealed in argon atmosphere at 1160C during 50 h with sub- sequent heat hardening in air. The measurements of diffraction pro- files (Fig. 7) were performed in the non-dispersive TCD scheme with symmetrical reflections Si(111) in Bragg diffraction geometry of char- acteristic CuK1-radiation on all three flat crystals (see Fig. 1) [16]. The set of TCD profiles was measured at fixed angular positions of the sample under investigation versus angular deviation of the analys- er crystal. As can be seen form an example in Fig. 7, the presence of diffuse scattering from defects in monochromator crystal leads to a rapid increase or decrease of the pseudo-peak height in comparison with that of main peak in dependence on the sign of the sample devia- tion. Such asymmetrical behaviour can be explained only by account- ing for the contribution of the antisymmetric part of diffuse scatter- ing intensity from microdefects in monochromator crystal [18]. The angular dependence of the ratio of diffuse to coherent integrated peak intensities calculated from the set of measured TCD profiles is shown in Fig. 8. The treatment of this dependence was performed for the defect model of spherical amorphous new phase SiO2 particles by using Eq. (64). The fit shows a good agreement between experimental observa- tions and theoretical calculations at following values of oxygen precipi- tate characteristics: RC  (0.94  0.10) m and nC  (1.2  0.1)106 cm 3. D) Anneal at 1180C during 6 h. The silicon single crystal was cut from the Cz-Si ingot perpendicularly to (111) growth axis. The sample of about 500 m thickness was annealed at 1180C during 6 h. Measure- ments of thickness dependences of the separated coherent and diffuse components of the total integrated reflecting power (Fig. 9) were car- ried out by the inclination method at Laue diffraction geometry on the investigated crystal in both TCD (Fig. 3) and DCD optical schemes with symmetrical Si(220) reflections of characteristic MoK1-radiation on all three crystals [36, 37]. In the optical TCD scheme used to separate coherent component of total integrated reflecting power (Fig. 3, a), the asymmetrically cut Si analyser crystal was chosen to strongly decrease the receiving aperture for the X-ray beam diffracted from the sample. In the optical TCD scheme used to separate diffuse component of to- tal integrated reflecting power (Fig. 3, b), the thin Si analyser crystal was set in the exact reflecting Bragg diffraction geometry to reflect DYNAMICAL THEORY OF TRIPLE-CRYSTAL X-RAY DIFFRACTOMETRY 123 the coherent component and to provide the transmission with low at- tenuation for X-ray beam diffracted from the sample outside the total reflection range. The fit of the measured thickness dependence of the total integrated reflecting power evidenced its low sensitivity to defect characteristics of the investigated nearly perfect silicon crystal. Namely, the follow- ing values of the absorption coefficient due to diffuse scattering, nor- malized to the photoelectric absorption coefficient, 0 ds 0 / 0.3 0.5    , and the exponent of static Krivoglaz—Debye—Waller factor L220  a b Fig. 7. Diffraction profiles measured by TCD for the symmetrical Si(111) re- flection of CuK1-radiation from the Cz-Si sample annealed at 1160C during 50 h [16] at the negative (a) and positive (b) angles of sample deviation. Fig. 8. Angular dependence of the ratio of diffuse to coherent integrated peak intensities calculated from measured TCD profiles (points–experiment, solid line–theory) [16]. 124 V. B. MOLODKIN, S. I. OLIKHOVSKII, E. G. LEN et al.  0.005  0.001 were found. However, the additional fit of the meas- ured thickness dependence of the separated coherent component of to- tal integrated reflecting power (see Figs. 3, a and 9, a) at fixed value of L220  0.005 allowed the determination of the absorption coefficient due to diffuse scattering with sufficiently high precision, namely, 0 ds 0 / 0.23 0.02    . The thickness dependences of the total integrated reflecting power and its diffuse component separated by using the optical TCD scheme shown in Fig. 3, b are represented in Fig. 9, b. The fit of the separated diffuse component at fixed value of L220  0.005 allowed determining the value of absorption coefficient due to diffuse scattering, 0 ds 0 / 0.25 0.02    , which is very close to that determined by the previous method. Thus, both the optical TCD schemes used to separate measured co- herent and diffuse components of the total integrated reflecting power allow for increasing, in comparison with the conventional inclination a b Fig. 9. Thickness dependences of the separated coherent and diffuse compo- nents of total integrated reflecting power measured by the inclination method using optical TCD schemes shown: (a)–in Fig. 3, a and (b)–in Fig. 3, b corre- sponding to Bragg and Laue diffraction geometries for the investigated sili- con crystal, respectively (markers–experiment; solid, dot, dashed, and dot- dashed lines–theory) [36, 37]. DYNAMICAL THEORY OF TRIPLE-CRYSTAL X-RAY DIFFRACTOMETRY 125 method, the precision of determination of the second important defect characteristics, namely, the absorption coefficient due to diffuse scat- tering, additionally to static Krivoglaz—Debye—Waller factor. 4.1.2. Annealing at Low Temperature The investigated Cz-Si crystal of 480 m thickness has been cut from the central part of 10 cm wafer with (111) surface orientation perpen- dicular to growth axis. The sample of р-type conductivity with the re- sistance of 10.5 сm, which contained 1.11018 сm 3 and less than 1.01017 сm 3 of oxygen and carbon atoms, respectively, was annealed at 750C during 50 h. Measurements of TCD profiles (Fig. 10, a) were carried out in Bragg diffraction geometry near reciprocal lattice point (111) in the non- dispersive scheme (n, n, n) by automated home-made TCD with flat monochromator and analyser crystals (see Fig. 1). Also, the rocking curves were measured in the mode of DCD with widely open detector window [42]. In the model used to describe defect structure in the investigated Cz- Si sample, the presence of two types of microdefects was supposed, namely, the disk-shaped amorphous oxygen precipitates SiO2 (radius RP, thickness hP, and number density nP) and chaotically oriented cir- cular dislocation loops of interstitial type with Burgers vector b  <110>/2 (radius RL and number density nL) (see, e.g., [20]). The contribution from thermal diffuse scattering was simulated by the dif- fuse scattering from spherical clusters with the radius equal to the co- valent one of silicon atom RP  1.17 Å and concentration nP   51022 сm 3, i.e., concentration of silicon atoms. The value of strain at a b Fig. 10. Fitted TCD profile (a) and rocking curve (b) for Si(111) reflection of CuK1-radiation from Cz-Si sample annealed at 750C during 50 h [42]. 126 V. B. MOLODKIN, S. I. OLIKHOVSKII, E. G. LEN et al. such ‘cluster’ boundary   0.25 has been found by fitting and corre- sponds well with the mean-square deviation of vibrating Si atoms. The defect characteristics given in Table 2 have been determined by the self-consistent fitting the measured rocking curve and TCD profiles. The successful treatment of diffraction profiles measured by TCD and DCD was possible due to their different sensitivities to microde- fects of different types and sizes. In particular, the contributions of diffuse scattering intensity from small microdefects, point defects, and thermal vibrations to TCD profiles are significantly smaller in magnitude as compared to those from large microdefects. On the other hand, these contributions are comparable on DCD profiles due to the additional integration of diffuse scattering intensity over vertical di- vergence. More important, however, was the use of the common theo- retical approach to the description of diffraction profiles measured by TCD and DCD, namely, the generalized dynamical theory of X-ray scattering in real single crystals [10—17]. Thus, the most complete characterization of the defect structure in the investigated sample can be achieved after combined measurements by TCD and high-resolution DCD with joint treatment of experimental data by using this theory. TABLE 2. Characteristics of disk-shaped oxygen precipitates and circular dis- location loops in Cz-Si crystal annealed at 750C during 50 h [42]. RP, nm hP, nm nP, cm 3  RL, m nL, cm 3 10  1 5.0  0.5 (3.0  0.3)1013 0.0242 0.045  0.003 0.25  0.03 5.0  0.3 (5.0  1.5)1011 (5.8  1.6)109 (4  1)107 a b Fig. 11. Measured and calculated TCD diffraction profiles (markers and solid line, respectively) versus analyser deviation angle () at fixed values of de- viation angle () of the investigated Cz-Si sample annealed at 750C during 50 h, Si(111) reflection, CuK-radiation [19]. DYNAMICAL THEORY OF TRIPLE-CRYSTAL X-RAY DIFFRACTOMETRY 127 In Ref. [42], such approach has allowed to determine not only the characteristics of small and large microdefects in the crystal bulk but also the strain in subsurface layer, which is caused by the so called ‘mirror image forces’ from all the defects in crystal bulk. This strain was described by the exponential law 0 0 ( ) exp( / )z z t     , where z is the depth, and the parameters have been determined to be equal t0  7 nm and 0 410 .   It is of interest to compare the determined defect characteristics with those obtained for the same sample two years ago in a similar re- search [19], where the measurements of TCD profiles (Fig. 11) were carried out also in Bragg diffraction geometry by the home-made TCD. The model of defect structure of the investigated Cz-Si sample, which was used to fit the measured TCD diffraction profiles and rocking curves, was different only in that the presence of the spherical instead of disk-shaped amorphous oxygen precipitates SiO2 was supposed. The defect characteristics given in Table 3 have been determined by the self-consistent fitting the measured rocking curves and TCD profiles. As can be seen by comparing the defect characterization data from Tables 2 and 3, the average volume of oxygen precipitates remained unchanged within the fit error after two-year conservation at the room temperature. Moreover, the characteristics of large dislocation loops are constant. At the same time, the small dislocation loops have been partially dissolved after two-year ageing by emitting nearly half of their silicon interstitials. 4.2. Defect Structure of the Silicon Crystal Grown by Floating-Zone Method The investigated sample has been cut from the central part of the oxy- gen-free silicon single-crystalline plate grown by the floating-zone method (FZ-Si). The conventional X-ray topography and scanning elec- tron microscopy have not revealed any defects in the sample. The model of defect structure in the investigated FZ-Si sample, which was chosen to describe the measured diffraction profiles [17], was based on results of direct observations of FZ-Si crystals by the TABLE 3. Characteristics of spherical oxygen precipitates and circular dislo- cation loops in Cz-Si crystal annealed at 750C during 50 h [19]. RP, nm nP, cm 3 RL, m nL, cm 3 0.01 11013 0.05 0.3 5.0 81011 9109 4107 128 V. B. MOLODKIN, S. I. OLIKHOVSKII, E. G. LEN et al. transmission electron microscopy [43—46]. This model includes three types of defects, namely, circular dislocation loops of interstitial type with the Burgers vector <110>/2, disc-shaped precipitates of un- known nature, and point defects. The later ones give a small contribu- tion to rocking curve tails in the measured  range, being comparable to that of thermal diffuse scattering, but affect appreciably the dif- fraction pattern through the corresponding significant addition to the exponent of the static Krivoglaz—Debye—Waller factor. Monochromator and analyser crystals used in TCD were identical to the investigated sample, i.e., they have been cut from the central part of the same FZ-Si plate. TCD measurements were carried out in non- dispersive scheme (n, n, n) with symmetric (111) reflections in Bragg diffraction geometry on all three crystals by using CuK1-radiation from the conventional X-ray tube (see Fig. 1). The TCD diffraction profiles (Fig. 12) were measured at fixed sample deviation  by rotat- ing analyser crystal () with using the step motor. The very low heights of diffuse peaks as compared to coherent ones indicate imme- diately the high perfection of the crystal under investigation. The rocking curves for symmetrical Bragg (111) and (333) reflec- tions of CuK1-radiation were measured by the high-resolution DCD with widely open detector window (Fig. 13). The dispersive (m, m, n) scheme was used in DCD with one-fold symmetrical Ge(333) reflections on both monochromator crystals. The fit of diffuse peaks on TCD profiles (Fig. 12) and DCD rocking curves (Fig. 13) was performed supposing the same defect model. It should be emphasized also that the separate measurement of diffuse a b Fig. 12. Diffuse peaks on the diffraction profiles measured by TCD at sample deviations   49 (a) and 73 arc sec (b), FZ-Si(111) reflection of CuK1- radiation. The calculated diffraction profile is constituted of coherent and diffuse components (thick solid, thin solid, and dash-dotted lines, respective- ly), the last one is the sum of diffuse scattering intensities from dislocation loops and precipitates (dashed and dotted lines, respectively) [17]. DYNAMICAL THEORY OF TRIPLE-CRYSTAL X-RAY DIFFRACTOMETRY 129 scattering intensity by TCD has allowed the determination of the in- terstitial nature of the precipitates, which give the noticeable anti- symmetric part to the observed diffuse scattering intensity. It was im- portant also to verify the obtained results, which follow from the anal- ysis of the diffuse scattering intensity superimposed in DCD meas- urements with the coherent scattering intensity, by the more direct observation of diffuse scattering intensity profiles measured by TCD separately from coherent ones. The determined characteristics of microdefects (radii RL and RP as well as number densities nL and nP of dislocation loops and disc-shaped precipitates, respectively) are listed in Table 4. The values of these characteristics, which have been obtained from different diffraction experiments, are sufficiently close one to other. The sizes of both type microdefects are in surprisingly good correspondence with those found in the direct observations of another FZ-Si crystal [43]. The discrepan- cies of number densities and size values can originate from the small- ness of crystal volumes probed in the transmission electron microscopy and, obviously, from different growth conditions. The characteristics of microdefects in the investigated FZ-Si sample have been repeatedly determined from the diffraction profiles (Fig. 14) and reciprocal space map (Fig. 15) measured by TCD five years later (see Table 5). As can be seen from Tables 4 and 5, the characteristics of dislocation loops in the FZ-Si sample have been only little changed af- ter five year conservation at the room temperature. However, the measurement and analysis of the reciprocal space map enables for the refinement of their average increased radius. At the same time, the average number of silicon interstitials in dislocation loops remained a b Fig. 13. Rocking curves measured for FZ-Si 111 (a) and 333 (b) reflections, CuK1-radiation. The calculated total rocking curves and their coherent com- ponents are shown by thick and thin solid lines, respectively, and diffuse scat- tering intensity contributions from dislocation loops, precipitates, and point defects are shown by dashed, dotted, and dash-dotted lines, respectively [17]. 130 V. B. MOLODKIN, S. I. OLIKHOVSKII, E. G. LEN et al. nearly unchanged due to the decreased concentration of these disloca- tion loops. 4.3. Defect Structure of the Cz-Si Crystal after High-Energy Electron Irradiation The investigated Cz-Si samples of (111) surface orientation and thick- nesses t  4.26 mm have been irradiated with doses 1.8 and 3.6 kGy (Nos. 1A and 1B, respectively) of high-energy electrons (18 MeV). The as-grown sample No. 1 was used as etalon for the comparison with the irradiated samples. Reciprocal space maps of the samples under investigation were measured by PANalytical X`Pert Pro MRD XL diffractometer (see Fig. 2) for the symmetrical Si(333) reflection of characteristic CuK1- radiation [47, 48]. Additionally, the rocking curves for Si(333) reflec- tion were measured in the -scanning mode by using the TCD with re- moved analyser crystal. The thorough comparative analysis of the measured reciprocal space maps (Fig. 16), their cross-sections (Fig. 17), and rocking curves (Fig. 18) was performed to achieve their mutual consistence on the base of a common set of defect characteristics. For this sake, the appropriate model of the defect structure was chosen which is typical for both as grown and annealed Cz-Si samples and consists of two types of random- ly distributed microdefects, namely, oxygen precipitates and intersti- tial dislocation loops [40]. The fit of the measured diffraction profiles and reciprocal space maps was carried out at neglecting the contributions from the thermal diffuse scattering and diffuse scattering from point defects as being TABLE 4. Microdefect characteristics determined from the diffraction pro- files measured by DCD and TCD for FZ-Si sample [17]. Method hkl RL, m nL, cm 3 RP, nm nP, cm 3 DCD 111 333 1.0 0.8 2.9108 1.8108 50 50 1.81011 3.21011 TCD 111 0.7 4.5108 50 1.01011 TABLE 5. Characteristics of circular dislocation loops in FZ-Si sample ob- tained by fitting total TCD profile and reciprocal space map [39]. Data type hkl RL, m nL, cm 3 Profile 111 1.15  0.1 (3.5  1)108 Map 111 2.1  0.5 (7.3  3)107 DYNAMICAL THEORY OF TRIPLE-CRYSTAL X-RAY DIFFRACTOMETRY 131 relatively small in the considered reciprocal space region [28]. In the analysis first of all, the fact was established that it was impossi- ble to describe any of the experimental reciprocal space maps having nearly oval shapes by using only spherical oxygen precipitates because the typical shape of the diffuse scattering intensity distribution for these defects is the ‘double droplet’. Therefore, the attempts were undertaken to fit jointly the diffraction profiles and rocking curves supposing the simultaneous presence of both types of microdefects, namely, spherical oxygen precipitates and circular interstitial dislocation loops. However, the account for the presence of both type defects with single sizes does Fig. 14. Measured and calculated TCD diffraction profile (markers and solid line, respectively) versus analyser deviation angle  at fixed deviation angle of the investigated FZ-Si sample   55 arc sec, Si(111) reflection, CuK1- radiation [39]. Fig. 15. Measured (left) and calculated (right) reciprocal space maps for the FZ-Si sample, Si(111) reflection, CuK-radiation [39]. 132 V. B. MOLODKIN, S. I. OLIKHOVSKII, E. G. LEN et al. not provide sufficiently good fits of all the diffraction patterns. a b c d e f Fig. 16. Measured (a, c, e) and calculated (b, d, f) reciprocal space maps of the as grown (No. 1–a, b) and electron-irradiated (No. 1A–c, d, and No. 1B–e, f) Cz-Si samples; (333) reflection, CuK1-radiation. The intensities of neigh- bouring equal intensity lines differ by a factor of 101/3, the quantities kx and kz are given in units of the reciprocal lattice parameter d110 4 [48]. DYNAMICAL THEORY OF TRIPLE-CRYSTAL X-RAY DIFFRACTOMETRY 133 To obtain the acceptable fit, the assumption on the presence of dislo- a B c D e f Fig. 17. Transverse (a, c, e) and longitudinal (b, d, f) cross-sections of the measured reciprocal space maps from Fig. 11 and their calculated profiles (markers and thick solid line, respectively), the last consist of coherent and diffuse components with contributions from small and large dislocation loops, and oxygen precipitates (thin solid, dashed, dotted, and dot-dashed lines, re- spectively) [48]. 134 V. B. MOLODKIN, S. I. OLIKHOVSKII, E. G. LEN et al. cation loops with two different sizes, namely, large and small ones, was necessary to be made (see the defect characteristics in Table 6). Thus, the simultaneous description of the rocking curves and recip- rocal space maps measured from both as-grown and irradiated Cz-Si samples is possible only if contributions from defects with at least three effective radii are considered. On the other hand, the appropriate shape of the equal intensity lines on all the maps can only be ensured by the predominant contribution of diffuse scattering from dislocation loops. The analysis of these maps demonstrated that the shape of equal intensity lines is typical for the case of circular dislocation loops with 〈111〉 orientations of Burgers vectors [39]. The radii of these (large) dislocation loops RL were estimated using the measured reciprocal space maps and their cross sections (Figs. 16 and 17). For the irradiat- ed samples, they turned out to be two fold less than for the as-grown a b c Fig. 18. Experimental and theoretical rocking curves (markers and thick lines) for the as-grown (a) and electron-irradiated Cz-Si samples Nos. 1A (b) and 1B (c); (333) reflection of CuK1-radiation. Other lines are explained in caption of Fig. 17. Central parts of the rocking curves are shown in the insets [48]. DYNAMICAL THEORY OF TRIPLE-CRYSTAL X-RAY DIFFRACTOMETRY 135 crystal. The concentration nL of these loops in the irradiated samples proved to be significantly (by an order of magnitude and more) larger as compared to the concentration in the as-grown sample (see Table 6). The estimate for radii of large spherical oxygen precipitates RP  1 m in all samples was obtained simultaneously with that for large loops. Their concentration nP in the irradiated samples signifi- cantly increased as compared with as-grown one. Final values of the characteristics of large dislocation loops and ox- ygen precipitates were obtained after introducing small dislocation loops into the combined treatment. These loops with radii of several nanometres give significant contributions at far tails of the rocking curves for all studied samples but their contributions are negligible in the TCD diffraction profiles (compare Figs. 17 and 18). As can be seen from the Table 6, the concentrations of small dislocation loops in the irradiated samples are approximately two fold smaller than in the as- grown crystal. The obtained results have been interpreted as follows. Under irradi- ation with high energy electrons the defect structure in the bulk of the silicon crystal is transformed due to the influence of two factors, namely, the creation of radiation defects, first of all, vacancies and in- terstitial silicon atoms, and the increase of crystal temperature (to ap- proximately 1000C at the chosen irradiation parameters) which en- hances diffusion processes. As can be seen from the results of diagnos- tics (Table 6), both these factors have significant influence on the de- composition processes of supersaturated solid solution of oxygen in silicon and results in considerable changes of the growth defect charac- teristics in both irradiated silicon samples as compared to the as-grown crystal. Thus, the obtained results demonstrate the possibility of increasing the unambiguity of the quantitative characterization of complex de- fect structures in imperfect single crystals owing to the joint treat- ment of reciprocal space maps and rocking curves. TABLE 6. Characteristics of dislocation loops (radius RL and concentration nL) and oxygen precipitates (RP and nP) in the as-grown (No. 1) and electron- irradiated (Nos. 1A and 1B) Cz-Si samples [48]. Sample No. RL, m nL, cm 3 RP, m nP, cm 3 1 0.002 0.15 1.151016 3.31011 1.0 7.5106 1A 0.003 0.065 5.01015 1.01013 1.0 1.25107 1B 0.003 0.07 5.01015 3.51012 1.0 9.0106 136 V. B. MOLODKIN, S. I. OLIKHOVSKII, E. G. LEN et al. 5. RESUME AND CONCLUSIONS The basic principles of the dynamical theory of X-ray diffraction by crystals with chaotically distributed microdefects are described. Based on this theory, the analytical expressions for the coherent and diffuse scattering intensities measured by TCD from crystals containing mi- crodefects of several types have been derived. Peculiarities of TCD measurements, which are connected with the presence of additional contributions in reflection coefficients of all the crystals of X-ray opti- cal scheme due to both strained subsurface layers and diffuse scatter- ing from defects in these crystals, have been taken into account as well. The developed theoretical model for the description of total TCD profiles and reciprocal lattice maps has allowed for performing the quantitative characterization of complicated defect structures in im- perfect single crystals at qualitatively new level of uniqueness and re- liability. Besides, the analysis of total diffraction profiles measured by TCD with flat monochromator and analyser crystals has provided the possibility of reliable establishment of the role of diffuse scattering from the monochromator crystal in the formation of coherent peaks on TCD profiles. In particular, the account for the influence of these fac- tors has allowed for giving the correct explanation of the asymmetrical behaviour of main and pseudo-peaks on TCD profiles. It is necessary to emphasize the especially important role of the joint processing reciprocal space maps and rocking curves for reliable quan- titative determination of the microdefect characteristics with a wide spread in their effective sizes. The analysis of reciprocal space maps is the simplest way to unambiguously establish the dominant type of mi- crodefects that make the main contribution to the measured differen- tial diffuse scattering intensity distributions and to determine the ap- proximate characteristics of these defects. At the same time, owing to integration of the diffuse scattering intensity over the Ewald sphere, rocking curves are more sensitive to small size defects as compared to reciprocal space maps in which the contribution from small defects is almost negligible. The developed self-consistent dynamical theoretical model for the description of total TCD diffraction profiles, reciprocal space maps, and rocking curves has allowed for achieving the qualitatively new lev- el of uniqueness and reliability of defect characterization by using their joint treatment. In particular, the quantitative characterization of the complicated microdefect structures created in various silicon crystals grown by the Czochralski and floating-zone methods have been determined by analytical treatment of the measured TCD profiles, rocking curves, and reciprocal space maps. This research was supported by Project No. 28/15-Н, N.A.S. of Ukraine. DYNAMICAL THEORY OF TRIPLE-CRYSTAL X-RAY DIFFRACTOMETRY 137 REFERENCES 1. P. Eisenberger, N. G. Alexanropoulos, and P. M. Platzmann, Phys. Rev. Lett., 28, No. 23: 1519 (1972). 2. B. C. Larson and W. G. Schmatz, Phys. Rev. B, 10, No. 6: 2307 (1974). 3. A. Iida and K. Kohra, phys. status solidi (a), 51, No. 2: 533 (1979). 4. A. Iida, phys. status solidi (a), 54, No. 2: 701 (1979). 5. A. M. Afanas’ev, M. V. Koval’chuk, E. F. Lobanovich, R. M. Imamov, P. A. Aleksandrov, and M. K. Melkonyan, Kristallografiya, 26, Iss. 1: 28 (1981) (in Russian). 6. E. K. Kov’ev, V. V. Ratnikov, and L. M. Sorokin, Fizika Tverdogo Tela, 23, No. 6: 1626 (1981) (in Russian). 7. P. Zaumseil and U. Winter, phys. status solidi (a), 70, No. 2: 497 (1982). 8. P. Zaumseil and U. Winter, phys. status solidi (a), 73, No. 2: 455 (1982). 9. А. А. Lomov, P. Zaumseil, and U. Winter, Acta Crystallogr. A, 41, No. 3: 223 (1985). 10. R. N. Kyutt, A. A. Sitnikova, and L. M. Sorokin, Fizika Tverdogo Tela, 27, No. 3: 673 (1985) (in Russian). 11. V. Holý and J. Kubĕna, phys. status solidi (b), 170, Iss. 1: 9 (1992). 12. L. A. Charniy, A. N. Morozov, V. T. Bublik, K. D. Scherbachev, I. V. Stepantsova, and V. M. Kaganer, J. Cryst. Growth, 118: 163 (1992). 13. V. Holý, U. Pietch, and T. Baumbach, High-Resolution X-Ray Scattering from Thin Films and Multilayers (Berlin—Heideiberg: Springer: 1998). 14. P. F. Fewster, X-Ray Scattering from Semiconductors (London: Imperial College Press: 2000). 15. V. B. Molodkin, S. I. Olikhovskii, M. E. Osinovskii, V. V. Kochelab, A. Yu. Kazimirov, M. V. Koval’chuk, and F. N. Chukhovskiy, Metallofizika, 6, No. 3: 7 (1984) (in Russian). 16. V. B. Molodkin, V. V. Nemoshkalenko, S. I. Olikhovskii, E. N. Kislovskii, O. V. Reshetnyk, T. P. Vladimirova, V. P. Krivitsky, V. F. Machulin, I. V. Prokopenko, G. E. Ice, and B. C. Larson, Metallofiz. Noveishie Tekhnol., 20, No. 11: 29 (1998). 17. V. B. Molodkin, M. Ando, E. N. Kislovskii, S. I. Olikhovskii, T. P. Vladimirova, O. V. Reshetnyk, E. G. Len, E. A. Evgrafova, and E. V. Pervak, Metallofiz. Noveishie Tekhnol., 24, No. 4: 541 (2002). 18. S. I. Olikhovskii, V. B. Molodkin, E. M. Kislovskii, O. V. Reshetnyk, T. P. Vladimirova, E. G. Len, G. E. Ice, R. I. Barabash, R. Köhler, and D. O. Grigoriev, Metallofiz. Noveishie Tekhnol., 27, No. 7: 949 (2005). 19. S. I. Olikhovskii, V. B. Molodkin, E. M. Kislovskii, O. V. Reshetnyk, T. P. Vladimirova, G. E. Ice, R. I. Barabash, R. Köhler, and D. O. Grigoriev, Metallofiz. Noveishie Tekhnol., 27, No. 9: 1251 (2005). 20. V. B. Molodkin, S. I. Olikhovskii, and M. E. Osinovskii, Metallofizika, 5, No. 1: 3 (1983) (in Russian). 21. V. B. Molodkin, S. I. Olikhovskii, E. N. Kislovskii, E. G. Len, and E. V. Pervak, phys. status solidi (b), 227: 429 (2001). 22. S. I. Olikhovskii, V. B. Molodkin, E. N. Kislovskii, E. G. Len, and E. V. Pervak, phys. status solidi (b), 231: 199 (2002). 23. V. S. Wang and R. J. Matyi, J. Appl. Phys., 72, Iss. 11: 5158 (1992). 24. M. A. Krivoglaz, X-Ray and Neutron Scattering in Nonideal Crystals (Berlin: 138 V. B. MOLODKIN, S. I. OLIKHOVSKII, E. G. LEN et al. Springer: 1996). 25. P. H. Dederichs, Phys. Rev. B, 4: 1041 (1971). 26. R. Bloch, D. Bahr, J. Olde, L. Brügemann, and W. Press, Phys. Rev. B, 42: 5093 (1990). 27. T. P. Vladimirova, R. F. Seredenko, V. B. Molodkin, S. I. Olikhovskii, and E. N. Kislovskii, Metallofiz. Noveishie Tekhnol., 29, No. 6: 711 (2007) (in Ukrainian). 28. V. B. Molodkin, S. I. Olikhovskii, E. N. Kislovskii, T. P. Vladimirova, E. S. Skakunova, R. F. Seredenko, and B. V. Sheludchenko, Phys. Rev. B, 78, No. 22: 224109 (2008). 29. V. P. Klad’ko, L. I. Datsenko, J. Bak-Misiuk, V. F. Machulin, I. V. Prokopenko, V. B. Molodkin, S. I. Olikhovskii, and Z. V. Maksimenko, J. Phys. D: Applied Physics, 34, No. 10А: A87 (2001). 30. E. N. Kislovskii, O. V. Reshetnyk, T. P. Vladimirova, V. B. Molodkin, S. I. Olikhovskii, B. V. Sheludchenko, R. F. Seredenko, and E. S. Skakunova, Metallofiz. Noveishie Tekhnol., 29, No. 5: 701 (2007) (in Ukrainian). 31. A. P. Shpak, V. B. Molodkin, S. I. Olikhovskii, Ye. M. Kislovskii, O. V. Reshetnyk, T. P. Vladimirova, E. G. Len, A. I. Nizkova, V. M. Venger, and S. V. Dmitriev, phys. status solidi (b), 204, No. 8: 2651 (2007). 32. V. B. Molodkin, S. I. Olikhovskii, E. S. Skakunova, E. G. Len, E. N. Kislovskii, O. V. Reshetnyk, T. P. Vladimirova, V. V. Lizunov, L. N. Skapa, S. V. Lizunova, E. V. Fuzik, N. G. Tolmachev, B. K. Ostafiychuk, V. M. Pylypiv, and O. Z. Garpul’. Metallofiz. Noveishie Tekhnol., 37, No. 8: 1017 (2015). 33. E. S. Skakunova, Metallofiz. Noveishie Tekhnol., 37, No. 4: 555 (2015). 34. J. Chikawa, Y. Asaeda, and I. Fujimoto, J. Appl. Phys., 41: 1922 (1970). 35. V. Holý, and J. Kubĕna, phys. status solidi (b), 141, No. 1: 35 (1987). 36. V. V. Nemoshkalenko, V. B. Molodkin, E. N. Kislovskii, S. I. Olikhovskii, T. A. Grishchenko, M. T. Kogut, and E. V. Pervak, Metallofiz. Noveishie Tekhnol., 22, No. 2: 42 (2000) (in Russian). 37. V. G. Bar’yahtar, V. V. Nemoshkalenko, V. B. Molodkin, A. P. Shpak, D. Chikava, K. Kohra, R. N. Kyutt, S. I. Olikhovskii, A. I. Nizkova, T. A. Grishchenko, E. N. Kislovskii, M. T. Kogut, and M. V. Koval’chuk, Metallofizika, 15, No. 12: 72 (1993) (in Russian). 38. C. Bergmann, A. Gröschel, J. Will, and A. Magerl, J. Appl. Phys., 118: 015707 (2015). 39. V. B. Molodkin, S. I. Olikhovskii, E. G. Len, E. N. Kislovskii, V. P. Kladko, O. V. Reshetnyk, T. P. Vladimirova, and B. V. Sheludchenko, phys. status solidi (a), 206, No. 8: 1761 (2009). 40. A. Borgesi, B. Pivac, A. Sasella, and A. Stella, J. Appl. Phys., 77: 4169 (1995). 41. V. B. Molodkin, S. I. Olikhovskii, Ye. M. Kyslovskyy, E. G. Len, O. V. Reshetnyk, T. P. Vladimirova, V. V. Lizunov, and S. V. Lizunova, Semiconductor Physics, Quantum Electronics and Optoelectronics, 13, No. 4: 353 (2010). 42. A. P. Shpak, V. B. Molodkin, S. I. Olikhovskii, Ye. M. Kyslovskyy, O. V. Reshetnyk, T. P. Vladimirova, E. G. Len, A. I. Nizkova, V. M. Venger, and S. V. Dmitriev, phys. status solidi (a), 204, No. 8: 2651 (2007). 43. P. M. Petroff and A. J. R. de Kock, J. Cryst. Growth, 30: 117 (1975). 44. H. Föll, V. Gösele, and B. O. Kolbesen, J. Cryst. Growth, 52, No. 2: 907 (1981). 45. P. J. Roksnoer and M. M. B. van der Boom, J. Cryst. Growth, 53, No. 3: 563 DYNAMICAL THEORY OF TRIPLE-CRYSTAL X-RAY DIFFRACTOMETRY 139 (1981). 46. P. J. Roksnoer, J. Cryst. Growth, 68, No. 2: 596 (1984). 47. V. B. Molodkin, S. I. Olikhovskii, Ye. M. Kyslovskyy, T. P. Vladimirova, E. V. Kochelab, O. V. Reshetnyk, V. V. Dovganyuk, І. М. Fodchuk, T. V. Lytvynchuk, V. P. Klad’ko, and Z. Świątek, phys. status solidi (a), 208, No. 11: 2552 (2011). 48. E. N. Kislovskii, V. B. Molodkin, S. I. Olikhovskii, E. G. Len, B. V. Sheludchenko, S. V. Lizunova, T. P. Vladimirova, E. V. Kochelab, O. V. Reshetnik, V. V. Dovganyuk, I. M. Fodchuk, T. V. Litvinchuk, and V. P. Klad’ko, J. Surface Investigation. X-Ray, Synchrotron and Neutron Techniques, 7, No. 3: 523 (2013). << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments true /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E> /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e> /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002> /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002> /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e> /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e> /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e> /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e> /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a> /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e> /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e> /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E> /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e> /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e> /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002> /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e> /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e> /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e> /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e> /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e> /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e> /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e> /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e> /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e> /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e> /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e> /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e> /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e> /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e> /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice