Quantum stochastic processes: boson and fermion Brownian motion
Dynamics of quantum systems which are stochastically perturbed by linear coupling to the reservoir can be studied in terms of quantum stochastic differential equations (for example, quantum stochastic Liouville equation and quantum Langevin equation). In order to work it out one needs to define t...
Gespeichert in:
Datum: | 2003 |
---|---|
Hauptverfasser: | Kobryn, A.E., Hayashi, T., Arimitsu, T. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут фізики конденсованих систем НАН України
2003
|
Schriftenreihe: | Condensed Matter Physics |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/120765 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Quantum stochastic processes: boson and fermion Brownian motion / A.E. Kobryn , T. Hayashi, T. Arimitsu // Condensed Matter Physics. — 2003. — Т. 6, № 4(36). — С. 637-646. — Бібліогр.: 40 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
On differentiability of solution to stochastic differential equation with fractional Brownian motion
von: Mishura, Yu.S., et al.
Veröffentlicht: (2007) -
An isonormal process associated with a Brownian motion
von: A. A. Dorohovtsev, et al.
Veröffentlicht: (2022) -
Existence and uniqueness of solution of mixed stochastic differential equation driven by fractional Brownian motion and wiener process
von: Mishura, Y., et al.
Veröffentlicht: (2007) -
Arbitrage with fractional brownian motion?
von: Bender, C., et al.
Veröffentlicht: (2007) -
Thermo field hydrodynamic and kinetic equations of dense quantum nuclear systems
von: Tokarchuk, M.V., et al.
Veröffentlicht: (1998)