Critical slowing down in random anisotropy magnets

We study the purely relaxational critical dynamics with non-conserved order parameter (model A critical dynamics) for three-dimensional magnets with disorder in a form of the random anisotropy axis. For the random axis anisotropic distribution, the static asymptotic critical behaviour coincides...

Full description

Saved in:
Bibliographic Details
Date:2005
Main Authors: Dudka, M., Folk, R., Holovatch, Yu., Moser, G.
Format: Article
Language:English
Published: Інститут фізики конденсованих систем НАН України 2005
Series:Condensed Matter Physics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/121048
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Critical slowing down in random anisotropy magnets / M. Dudka, R. Folk, Yu. Holovatch, G. Moser // Condensed Matter Physics. — 2005. — Т. 8, № 4(44). — С. 737–748. — Бібліогр.: 39 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We study the purely relaxational critical dynamics with non-conserved order parameter (model A critical dynamics) for three-dimensional magnets with disorder in a form of the random anisotropy axis. For the random axis anisotropic distribution, the static asymptotic critical behaviour coincides with that of random site Ising systems. Therefore the asymptotic critical dynamics is governed by the dynamical exponent of the random Ising model. However, the disorder effects considerably the dynamical behaviour in the non-asymptotic regime. We perform a field-theoretical renormalization group analysis within the minimal subtraction scheme in two-loop approximation to investigate asymptotic and effective critical dynamics of random anisotropy systems. The results demonstrate the non-monotonic behaviour of the dynamical effective critical exponent zeff .