Critical slowing down in random anisotropy magnets
We study the purely relaxational critical dynamics with non-conserved order parameter (model A critical dynamics) for three-dimensional magnets with disorder in a form of the random anisotropy axis. For the random axis anisotropic distribution, the static asymptotic critical behaviour coincides...
Saved in:
Date: | 2005 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Published: |
Інститут фізики конденсованих систем НАН України
2005
|
Series: | Condensed Matter Physics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/121048 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Critical slowing down in random anisotropy magnets / M. Dudka, R. Folk, Yu. Holovatch, G. Moser // Condensed Matter Physics. — 2005. — Т. 8, № 4(44). — С. 737–748. — Бібліогр.: 39 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | We study the purely relaxational critical dynamics with non-conserved order
parameter (model A critical dynamics) for three-dimensional magnets
with disorder in a form of the random anisotropy axis. For the random axis
anisotropic distribution, the static asymptotic critical behaviour coincides
with that of random site Ising systems. Therefore the asymptotic critical dynamics
is governed by the dynamical exponent of the random Ising model.
However, the disorder effects considerably the dynamical behaviour in
the non-asymptotic regime. We perform a field-theoretical renormalization
group analysis within the minimal subtraction scheme in two-loop approximation
to investigate asymptotic and effective critical dynamics of random
anisotropy systems. The results demonstrate the non-monotonic behaviour
of the dynamical effective critical exponent zeff . |
---|