The joint Rouse-Zimm theory of the dynamics of polymers in dilute solutions

We propose a theory of the dynamics of polymers in dilute solution, in which the popular Zimm and Rouse models are just the limiting cases of an infinitely large and small draining parameter. The equation of motion for the polymer segments (beads) is solved together with Brinkman’s equation for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2006
Hauptverfasser: Lisy, V., Tothova, J., Zatovsky, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2006
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/121288
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The joint Rouse-Zimm theory of the dynamics of polymers in dilute solutions / V. Lisy, J. Tothova, A. Zatovsky // Condensed Matter Physics. — 2006. — Т. 9, № 1(45). — С. 95-102. — Бібліогр.: 23 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We propose a theory of the dynamics of polymers in dilute solution, in which the popular Zimm and Rouse models are just the limiting cases of an infinitely large and small draining parameter. The equation of motion for the polymer segments (beads) is solved together with Brinkman’s equation for the solvent velocity that takes into account the presence of other polymer coils in the solution. The equation for the polymer normal modes is obtained and the relevant time correlation functions are found. A tendency to the time-dependent hydrodynamic screening is demonstrated on the diffusion of the polymers as well as on the relaxation of their internal modes. With the growing concentration of the coils in the solution, they both show a transition to the exactly Rouse behaviour. The shear viscosity of the solution, the Huggins coefficient and other quantities are calculated and shown to be notably different from the known results.