A class of solvable models in Condensed Matter Physics
In this paper, we show that there is a large class of fermionic systems for which it is possible to find, for any dimension, a finite closed set of eigenoperators and eigenvalues of the Hamiltonian. Then, the hierarchy of the equations of motion closes and analytical expressions for the Green’s fu...
Збережено в:
Дата: | 2006 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2006
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/121329 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A class of solvable models in Condensed Matter Physics / F. Mancini // Condensed Matter Physics. — 2006. — Т. 9, № 2(46). — С. 393–402. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In this paper, we show that there is a large class of fermionic systems for which it is possible to find, for any
dimension, a finite closed set of eigenoperators and eigenvalues of the Hamiltonian. Then, the hierarchy of
the equations of motion closes and analytical expressions for the Green’s functions are obtained in terms of
a finite number of parameters, to be self-consistently determined. Several examples are given. In particular,
for these examples it is shown that in the one-dimensional case it is possible to derive by means of algebraic
constraints a set of equations which allow us to determine the self-consistent parameters and to obtain a
complete exact solution. |
---|