Plasma assisted deposition of TaB₂ coatings by magnetron sputtering system
In the present paper the results of TaB₂ coating deposition in cluster set-up comprising a low pressure planar magnetron and an inductive plasma source are presented. The system allows to control independently the fluxes of the deposited Ta and B atoms from the sputtered TaB₂ target, and the fluxes...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2017
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/122171 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Plasma assisted deposition of TaB₂ coatings by magnetron sputtering system / S. Yakovin, A. Zykov, S. Dudin, V. Farenik, A. Goncharov, I. Shelest, V. Kuznetsov // Вопросы атомной науки и техники. — 2017. — № 1. — С. 187-190. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-122171 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1221712020-11-11T21:49:25Z Plasma assisted deposition of TaB₂ coatings by magnetron sputtering system Yakovin, S. Zykov, A. Dudin, S. Farenik, V. Goncharov, A. Shelest, I. Kuznetsov, V. Низкотемпературная плазма и плазменные технологии In the present paper the results of TaB₂ coating deposition in cluster set-up comprising a low pressure planar magnetron and an inductive plasma source are presented. The system allows to control independently the fluxes of the deposited Ta and B atoms from the sputtered TaB₂ target, and the fluxes of argon ions and electrons from the inductive plasma. Low argon pressure in the chamber allows the deposition process in the collisionless regime, providing the composition of the deposited film which is very close to the stoichiometry of the sputtered target. The correlation of the TaB₂ coating structure with the substrate voltage in the range from -50 to +50 V is demonstrated. Представлены результаты нанесения покрытий TaB₂ в кластерной установке, включающей плоский магнетрон низкого давления и индукционный источник плазмы. Система позволяет контролировать независимо друг от друга как потоки осаждаемых атомов Та и В из распыляемой мишени TaB₂, так и потоки ионов аргона и электронов из индукционной плазмы. Низкое давление аргона в камере позволяет проводить процесс напыления в бесстолкновительном режиме, обеспечивая состав осаждённой плёнки, очень близкий к стехиометрическому составу распыляемой мишени. Показана взаимосвязь структуры покрытия TaB₂ с напряжением смещения на подложке (в диапазоне от -50 до +50 В) и с плотностью ионного тока. Представлено результати нанесення покриттів TaB₂ у кластерній установці з плоским магнетроном низького тиску та індукційним джерелом плазми. Система дозволяє контролювати незалежно один від одного як потоки осаджуваних атомів Та й В з мішені TaB₂, так і потоки іонів аргону і електронів з індукційної плазми. Низький тиск аргону в камері дозволяє проводити процес нанесення в режимі без зіткнень, забезпечуючи склад синтезованою плівки, дуже близький до стехіометричного складу мішені. Показано взаємозв'язок структури покриття TaB₂ з напругою зсуву на підкладці (в діапазоні від -50 до +50 В) і з щільністю іонного струму. 2017 Article Plasma assisted deposition of TaB₂ coatings by magnetron sputtering system / S. Yakovin, A. Zykov, S. Dudin, V. Farenik, A. Goncharov, I. Shelest, V. Kuznetsov // Вопросы атомной науки и техники. — 2017. — № 1. — С. 187-190. — Бібліогр.: 15 назв. — англ. 1562-6016 PACS: 52.77.-j, 81.15.-z http://dspace.nbuv.gov.ua/handle/123456789/122171 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Yakovin, S. Zykov, A. Dudin, S. Farenik, V. Goncharov, A. Shelest, I. Kuznetsov, V. Plasma assisted deposition of TaB₂ coatings by magnetron sputtering system Вопросы атомной науки и техники |
description |
In the present paper the results of TaB₂ coating deposition in cluster set-up comprising a low pressure planar magnetron and an inductive plasma source are presented. The system allows to control independently the fluxes of the deposited Ta and B atoms from the sputtered TaB₂ target, and the fluxes of argon ions and electrons from the inductive plasma. Low argon pressure in the chamber allows the deposition process in the collisionless regime, providing the composition of the deposited film which is very close to the stoichiometry of the sputtered target. The correlation of the TaB₂ coating structure with the substrate voltage in the range from -50 to +50 V is demonstrated. |
format |
Article |
author |
Yakovin, S. Zykov, A. Dudin, S. Farenik, V. Goncharov, A. Shelest, I. Kuznetsov, V. |
author_facet |
Yakovin, S. Zykov, A. Dudin, S. Farenik, V. Goncharov, A. Shelest, I. Kuznetsov, V. |
author_sort |
Yakovin, S. |
title |
Plasma assisted deposition of TaB₂ coatings by magnetron sputtering system |
title_short |
Plasma assisted deposition of TaB₂ coatings by magnetron sputtering system |
title_full |
Plasma assisted deposition of TaB₂ coatings by magnetron sputtering system |
title_fullStr |
Plasma assisted deposition of TaB₂ coatings by magnetron sputtering system |
title_full_unstemmed |
Plasma assisted deposition of TaB₂ coatings by magnetron sputtering system |
title_sort |
plasma assisted deposition of tab₂ coatings by magnetron sputtering system |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2017 |
topic_facet |
Низкотемпературная плазма и плазменные технологии |
url |
http://dspace.nbuv.gov.ua/handle/123456789/122171 |
citation_txt |
Plasma assisted deposition of TaB₂ coatings by magnetron sputtering system / S. Yakovin, A. Zykov, S. Dudin, V. Farenik, A. Goncharov, I. Shelest, V. Kuznetsov // Вопросы атомной науки и техники. — 2017. — № 1. — С. 187-190. — Бібліогр.: 15 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT yakovins plasmaassisteddepositionoftab2coatingsbymagnetronsputteringsystem AT zykova plasmaassisteddepositionoftab2coatingsbymagnetronsputteringsystem AT dudins plasmaassisteddepositionoftab2coatingsbymagnetronsputteringsystem AT farenikv plasmaassisteddepositionoftab2coatingsbymagnetronsputteringsystem AT goncharova plasmaassisteddepositionoftab2coatingsbymagnetronsputteringsystem AT shelesti plasmaassisteddepositionoftab2coatingsbymagnetronsputteringsystem AT kuznetsovv plasmaassisteddepositionoftab2coatingsbymagnetronsputteringsystem |
first_indexed |
2025-07-08T21:17:14Z |
last_indexed |
2025-07-08T21:17:14Z |
_version_ |
1837115048570388480 |
fulltext |
ISSN 1562-6016. ВАНТ. 2017. №1(107)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2017, № 1. Series: Plasma Physics (23), p. 187-190. 187
PLASMA ASSISTED DEPOSITION OF TaB2 COATINGS BY
MAGNETRON SPUTTERING SYSTEM
S. Yakovin
1
, A. Zykov
1
, S. Dudin
1
, V. Farenik
2
, A. Goncharov
3
, I. Shelest
3
, V. Kuznetsov
4
1
V.N. Karazin Kharkiv National University, Kharkov, Ukraine;
2
Scientific Center of Physical Technologies, Kharkov, Ukraine;
3
Sumy State University, Sumy, Ukraine;
4
The Institute of Applied Physics, National Academy of Sciences of Ukraine, Sumy, Ukraine
In the present paper the results of TaB2 coating deposition in cluster set-up comprising a low pressure planar
magnetron and an inductive plasma source are presented. The system allows to control independently the fluxes of
the deposited Ta and B atoms from the sputtered TaB2 target, and the fluxes of argon ions and electrons from the
inductive plasma. Low argon pressure in the chamber allows the deposition process in the collisionless regime,
providing the composition of the deposited film which is very close to the stoichiometry of the sputtered target. The
correlation of the TaB2 coating structure with the substrate voltage in the range from -50 to +50 V is demonstrated.
PACS: 52.77.-j, 81.15.-z
INTRODUCTION
The DC magnetron sputtering is a efficient tool for
the formation of nanocomposite coatings 1-4. The
sputtering of coatings can be realized in pure argon and
the coating containing elements of sputter target can be
formed 1. It is known 5, that main parameters in DC
magnetron sputtering, which affect the mobility of at-
oms and hence define the growth mechanism and the
film structure are:
the substrate heating, i.e. ratio Ts/Tm (where Ts
and Tm – substrate temperature and the melting point of
the film material, respectively);
the ion bombardment of the growing film.
The energy b, delivered to the growing coating by
the ion bombardment, which has a crucial effect on the
structure, microstructure, elemental and phase composi-
tion and physical properties 6. The value of the b con-
trolled by three parameters: (1) the substrate bias Us, (2)
the substrate ion current density ji and (3) the deposition
rate of coating aD.
The transition metal diboride films are actively in-
vestigated owing to their high physical and mechanical
characteristics. The tantal diboride films were subjected
the most detailed study of their structure, composition
and properties in the work 7. Thus overstoichiometric
films with growth texture (00.1) and columnar structure
exhibit the superhardness effect of 48.5 GPa compared
to films not possessing such structures.
The effect of the bias potential and substrate tem-
perature on the structure, composition and mechanical
properties of transition metals diboride (HfB2, TaB2)
films deposited by RF-magnetron sputtering of targets
in argon was studied in our previous papers 8, 9. It
was shown that the formation of coating of various
structures – from an amorphous to nanocrystalline oc-
curs depending on the substrate temperature and applied
bias potential.
The aim of this work is a comparative analysis of
the bias potential effect applied to the substrate and the
additional argon ion bombardment from ICP discharge
at unbalanced DC magnetron sputtering system of TaB2
on the structure and the properties of the films.
1. EXPERIMENTAL SETUP
The tantalum diboride coatings were deposited on
AISI 302 stainless steel substrates in the experimental
multifunctional cluster ion plasma system with parame-
ters corresponding to the demands of industrial opera-
tion. The main purpose of this system is synthesis and
processing of complex composite (including nanocom-
posite) coatings and structures, based on TiN, AlN,
TiO2, Al2O3, ZrO2, Ta2O5 and their combinations. The
research results of the different module components
investigations and technological module operation of
high quality complex coatings were published previous-
ly in the works 10-14.
The basic novelty of the present work is the inves-
tigation of the argon ion flow with different energy and
ion current density influence on the structure and me-
chanical properties of tantalum diboride coatings.
The multifunctional cluster set-up is schematically
shown in the Fig. 1. The system consists of low-
pressure magnetrons 2 (photo on Fig. 2,b) located on the
butt end of chamber, the RF inductive source of argon
plasma 3 located inside the chamber and the ion source
7 located on lateral flange of the chamber. The relative
location of these components has been chosen to pro-
vide the possibility of the simultaneous action on the
processed surface of the flows of metal atoms and ions
of rare gas.
The RF inductive coupled plasma (ICP) source (3),
(see Fig. 1 and photo on Fig. 2,a) produced a plasma
stream, consisting of slow ions of argon with energy
20…40 eV and electrons. In such source plasma is con-
centrated in discharge chamber made from ceramic tube
(see Fig. 2,a). At the source exit the perforate metal
screen is erected to restricts the plasma and provide a
pressure drop between the source volume and the tech-
nological chamber.
The plasma source was placed inside the vacuum
chamber, that allows to choose the optimum relation
between the distance from the magnetron (2) and plas-
ma source (3) to samples on the substrate holder (9)
(see Fig. 1). The ICP source was supplied by the RF
power up to 1 kW (frequency 13.56 MHz) from the RF
188 ISSN 1562-6016. ВАНТ. 2017. №1(107)
generator (4), which connected to the inductive coils
through the RF matchbox (5).
Ar
2 3
5
1
1
11
6
4
10 см
7
8
10
9
Ar To pump
Fig. 1. Scheme of the cluster set-up for complex com-
posite compounds synthesis. 1 – DC magnetron power
supply; 2 – magnetron; 3 – RF ICP source; 4 – RF gen-
erator; 5 – RF matchbox; 6 – probe; 7 – ion source;
8 – DC power supply; 9 – power supply for samples
polarization; 10 – samples rotation system; 11 – shutter
The multichannel ion source “Radical M” (7) pro-
duced the argon ion beam with the mean energy
0.5…1 keV 15, directed to the processed samples and
applied for cleaning and activation the sample surface
before the coating process.
Using the pulsed or DC power supply (9) for the
work peaces polarization, it is possible to apply a con-
stant or impulses voltage with different duty cycle to the
rotated substrate holder (11).
a b
c
Fig. 2. The photo of ICP source (a), magnetron (b) and
the photo of inside chamber during the process (c)
2. TECHNOLOGICAL REGIME
The key novelty of the present system comparing to
the known designs is the operating pressure range
(0.4…2) mTorr, where motion of ions and sputtering
atoms is free fall. It allows to increase the distance
magnetron-substrate holder up to 30…40 cm, signifi-
cantly increase the deposition area and operate with ICP
and “Radical” ion sources.
In the Fig. 3 the current-voltage characteristics
(CVC) of magnetron for the tantalum and sintered TaB2
powder targets are shown. As can be seen from the fig-
ure CVC determines the main parameters of magnetron
discharge – target voltage Um and total discharge current
Im, for deposition technological regimes. In the Fig. 3
the basic technological regime in our experiments is
demonstrated by area between shaded lines.
0 2 4 6 8
0
200
400
600
U
m
,
V
TaB
2
I
m
, A
Ta
basic technological
regime
Fig. 3. Current-voltage characteristics of magnetron
and the basic technological regimes (shaded area) for
deposition TaB2 coating. Argon pressure p = 0.8 mTorr
The second important parameter for deposition is the
ion current density ji to the substrate holder. In the Fig.
4 the radial distributions of ji are presented separately
for the magnetron plasma and ICP discharge. The dis-
tributions were measured by flat probe (7) (see Fig. 1) at
potential (–30) V.
-30 -20 -10 0 10 20 30
0,0
0,2
0,4
0,6
0,8
2
1
I pr
, m
A
/c
m
2
Probe position, cm
Fig. 4. Radial distributions of ion current density
to the substrate holder for magnetron plasma (1)
and ICP (2)
A detailed study of the dependencies of ion bom-
bardment on the parameters of the magnetron and the
ICP discharges given in the work 12.
ISSN 1562-6016. ВАНТ. 2017. №1(107) 189
The main parameters during the technological pro-
cesses were monitoring by PC and the typical time de-
pendences of these parameters and technological steps
are presented in the Fig. 5.
0 600 1200 1800 2400
0
200
400
600 6
4
2
U
m
,
V
2
I
s
= 35 mA
U
s
= 2 kV
Time, Sec
1 3
I m
,
A
Fig. 5. Technological process. 1 target trenning;
2 samples cleaning; 3 film deposition
3. EXPERIMENTAL RESULTS
The tantalum diboride coatings were deposited on
substrates with the magnetron discharge power
2.5…2.8 kW, argon pressure in the working chamber
was 0.6 mTorr. The substrate temperature was varied
from 200 to 300C. Deposition was carry out as on the
grounded metal substrate holder, as well as upon appli-
cation of a positive or negative bias potential. Speci-
mens were disposed at a distance of 20 cm from the
target, sputtering was carried out within 30 min. Magne-
tron target training and sample cleaning by ion beam
were performed directly before deposition within 3 min.
X-ray diffraction researches of the material struc-
ture were carried out on an automated diffractometer
DRON-3. The CuKa radiation (wavelength 0.154 nm)
and the Bragg-Brentano focusing method –2
(2 – Bragg angle) were used in the shooting. The val-
ues of current and voltage on the X-ray tube were
20 mA and 40 kV. Shooting of specimens was carried
out with horizontal slits of 4 mm on the tube and of
1 mm on the detector in continuous registration mode
with a rate of 1/min in a 2 angle range from 25 to
60. Calculation of the nanocrystallites size was per-
formed by approximation method.
The effect of the bias potential on the structure of
tantalum diboride films deposited with ICP source was
studied. X-ray diffraction peak profile analysis (see
Fig. 6) of films prepared at different bias potentials ap-
plied to the substrate shows that the textured films with
growth texture (00.1) are formed when the substrate
holder is grounded and the positive (+50 V) or negative
(–50 V) bias potential is applied to the substrate. Thus,
the degree of the films texture increases at the applica-
tion of a negative bias potential (–50 V), that lead to an
increase in crystallite size from 24 to 47 nm.
Fig. 6. The diffraction patterns of the specimens for
various bias potentials applied to the substrate: speci-
men 1 (grounding, gap) (a); specimen 2 (–50 V) (b);
specimen 3 (floating potential) (c);
specimen 4 (+50 V) (d)
CONCLUSIONS
The effect of the bias potential and ion current from
ICP source on the structure TaB2 films deposited in clus-
ter set-up system with unbalanced magnetron and ICP
discharge were studied.
Nanocristalline TaB2 films with various degree of
texture by plane (00.1) were formed at the change in
applied bias potential.
It was shown that the value of the bias potential ap-
plied to the substrate is crucial to the films structure
formation, which determines respectively their physical
and mechanical properties.
REFERENCES
1. J.Musil. Low-pressure magnetron sputtering // Vacuum.
1998, v. 50, № (3-4), p. 363-372.
2. R.D. Arnell, P.J. Kelly. Recent advances in magnetron
sputtering // Surf.Coat.Technol. 1999, v. 112, p. 170-176.
3. I. Safi. Recent aspects concerning DC reactive magne-
tron sputtering of thin films: a review // Surf.Coat. Tech-
nol. 2000, v. 127, p. 203-218.
4. P.J. Kelly, R.D. Arnell. Magnetron sputtering: a review
of recent developments and applications // Vacuum. 2000,
v. 56, p. 159-172.
5. J. Musil, J. Vlček, P. Baroch. Magnetron discharges for
thin films plasma processing, Chapter 3 // Materials Sur-
face Processing by Directed Energy Techniques. Ed.:
Y. Pauleau. Elsevier Science Publisher B.V., Oxford, UK.
2006, p. 67-106.
6. Musil. Flexible Hard Nanocomposite Coatings // RSC
Advances, 2015, DOI: 10.1039/C5RA09586G.
7. P.H. Mayrhoffer, S. Mitterer, J.G Wen, J.I. Greene,
I. Petrov. Nanoscale effects on ion conductance of lay-
er-by-layer structures of gadolinia-doped ceria and zir-
conia // Appl.Phys.Lett., 2005, v. 86, p. 131906.
s
http://scitation.aip.org/content/aip/journal/apl/86/13/10.1063/1.1894615
http://scitation.aip.org/content/aip/journal/apl/86/13/10.1063/1.1894615
http://scitation.aip.org/content/aip/journal/apl/86/13/10.1063/1.1894615
190 ISSN 1562-6016. ВАНТ. 2017. №1(107)
8. A.A. Goncharov, V.A. Konovalov, S.N. Dub,
V.A. Stupak, V.V. Pepukhov. Structure, composition,
and physicomechanical characteristics of tantalum dibo-
ride films // Phys. Met. Metal. 2009, v. 107, p. 285-290.
9. A.A. Goncharov, G.K. Volkova, V.A. Konovalov,
V.V. Pepukhov. Effect of underlayer on orientation and
structure of thin films obtained by high-frequency mag-
netron sputtering of tantalum diboride target // Met.
Phys. Adv. Technol. 2006, v. 28, p. 1621-1628.
10. S.V. Dudin, V.I. Farenik, A.N. Dahov,
J. Walkowicz. Development of arc suppression tech-
nique for reactive magnetron sputtering // Physical Sur-
face Engineering. 2005, v. 3, № 3-4, p. 211-215.
11. J. Walkowicz, A. Zykov, S. Dudin, S. Yakovin,
R. Brudnias. ICP enhanced reactive magnetron sputter-
ing system for syntesis of alumina coating // Tribologia.
2006, № 6, p. 163-174.
12. A.V. Zykov, S.D. Yakovin, S.V. Dudin. Synthesis
of dielectric compounds by DC magnetron // Physical
Surface Engineering. 2009, v. 7, № 3, p. 195-203.
13. S. Yakovin, S. Dudin, A. Zykov, V. Farenik, Inte-
gral cluster set-up for complex compound composites
syntesis // Problems of Atomic Science and Technology.
Series:“Plasma Physics”. 2011, № 1, p. 152-154.
14. I. Denysenko, S. Dudin, A. Zykov, N. Azarenkov
and M. Yu. Ion flux uniformity in inductively coupled
plasma sources // Phys. Plasmas. 2002, v. 9, № 11,
p. 4767-4775.
15. Yu.P. Maishev. Ion sources and ion-beam equip-
ment for deposition and etching of materials // Vacuum
technique and technology. 1992, v. 2, № 3-4, p. 53-58.
Article received 21.10.2016
НАНЕСЕНИЕ ПОКРЫТИЙ TaB2 МЕТОДОМ МАГНЕТРОННОГО РАСПЫЛЕНИЯ
С ПЛАЗМЕННЫМ АССИСТИРОВАНИЕМ
С. Яковин, А. Зыков, С. Дудин, В. Фареник, А. Гончаров, И. Шелест, В. Кузнецов
Представлены результаты нанесения покрытий TaB2 в кластерной установке, включающей плоский
магнетрон низкого давления и индукционный источник плазмы. Система позволяет контролировать незави-
симо друг от друга как потоки осаждаемых атомов Та и В из распыляемой мишени TaB2, так и потоки ионов
аргона и электронов из индукционной плазмы. Низкое давление аргона в камере позволяет проводить про-
цесс напыления в бесстолкновительном режиме, обеспечивая состав осаждённой плёнки, очень близкий к
стехиометрическому составу распыляемой мишени. Показана взаимосвязь структуры покрытия TaB2 с
напряжением смещения на подложке (в диапазоне от -50 до +50 В) и с плотностью ионного тока.
НАНЕСЕННЯ ПОКРИТТІВ TaB2 МЕТОДОМ МАГНЕТРОННОГО РОЗПИЛЮВАННЯ
З ПЛАЗМОВИМ АСИСТУВАННЯМ
С. Яковін, О. Зиков, С. Дудін, В. Фаренік, О. Гончаров, І. Шелест, В. Кузнєцов
Представлено результати нанесення покриттів TaB2 у кластерній установці з плоским магнетроном ни-
зького тиску та індукційним джерелом плазми. Система дозволяє контролювати незалежно один від одного
як потоки осаджуваних атомів Та й В з мішені TaB2, так і потоки іонів аргону і електронів з індукційної пла-
зми. Низький тиск аргону в камері дозволяє проводити процес нанесення в режимі без зіткнень, забезпечу-
ючи склад синтезованою плівки, дуже близький до стехіометричного складу мішені. Показано взаємозв'язок
структури покриття TaB2 з напругою зсуву на підкладці (в діапазоні від -50 до +50 В) і з щільністю іонного
струму.
http://link.springer.com/article/10.1134/S0031918X09030107
http://link.springer.com/article/10.1134/S0031918X09030107
http://link.springer.com/article/10.1134/S0031918X09030107
|