Some aspects of deposition of conductive, dielectric and protective coatings on insulators with using arc discharge dc and RF bias
Investigation results for technological process of low temperature plasma deposition of functional coverings for dielectric substrate at low temperatures (50…250 oC) are shown. Combined high frequency and arc plasma sources were used to provide high deposition rate and an opportunity to operate with...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2017
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/122183 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Some aspects of deposition of conductive, dielectric and protective coatings on insulators with using arc discharge dc and RF bias / V.S. Taran, R.M. Muratov, Y.N. Nezovibat'ko, A.V. Leonovych, M.A. Sergiiets // Вопросы атомной науки и техники. — 2017. — № 1. — С. 265-268. — Бібліогр.: 4 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-122183 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1221832017-06-29T03:02:51Z Some aspects of deposition of conductive, dielectric and protective coatings on insulators with using arc discharge dc and RF bias Taran, V.S. Muratov, R.M. Nezovibat'ko, Y.N. Leonovych, A.V. Sergiiets, M.A. Диагностика плазмы Investigation results for technological process of low temperature plasma deposition of functional coverings for dielectric substrate at low temperatures (50…250 oC) are shown. Combined high frequency and arc plasma sources were used to provide high deposition rate and an opportunity to operate with heat sensitive substrate such as plastic, glass etc. Using this method there were obtained: pads on detectors of ionizing radiation, optically transparent protecting coverings for plexiglass, connecting coverings on mica for ultra-frequency emitter. Показаны результаты исследования технологического процесса низкотемпературного плазменного осаждения функциональных покрытий для диэлектрической подложки при низких температурах (50…250 °С). Для обеспечения высокой скорости осаждения и возможности работать с теплочувствительными подложками, такими как пластик, стекло, были использованы комбинированные высокочастотные и дуговые источники плазмы. С помощью этого метода были получены: детекторы ионизирующего излучения, оптически прозрачные покрытия для плексигласа, соединительные покрытия на слюде для ультрачастотного излучателя. Показано результати дослідження технологічного процесу низькотемпературного плазмового осадження функціональних покриттів для діелектричної підкладки, при низьких температурах (50…250 °С). Комбіновані високочастотний і дуговий джерела плазми були використані для забезпечення високої швидкості осадження і можливість працювати з теплочутливою підкладкою, такою як пластик, скло і т. д. За допомогою цього методу були отримані: детектори іонізуючого випромінювання, оптично прозорі захисні покриття для плексигласу, з'єднувальні покриття на слюді для ультрачастотного випромінювача. 2017 Article Some aspects of deposition of conductive, dielectric and protective coatings on insulators with using arc discharge dc and RF bias / V.S. Taran, R.M. Muratov, Y.N. Nezovibat'ko, A.V. Leonovych, M.A. Sergiiets // Вопросы атомной науки и техники. — 2017. — № 1. — С. 265-268. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 52.77.Dq, 51.30.+i http://dspace.nbuv.gov.ua/handle/123456789/122183 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Диагностика плазмы Диагностика плазмы |
spellingShingle |
Диагностика плазмы Диагностика плазмы Taran, V.S. Muratov, R.M. Nezovibat'ko, Y.N. Leonovych, A.V. Sergiiets, M.A. Some aspects of deposition of conductive, dielectric and protective coatings on insulators with using arc discharge dc and RF bias Вопросы атомной науки и техники |
description |
Investigation results for technological process of low temperature plasma deposition of functional coverings for dielectric substrate at low temperatures (50…250 oC) are shown. Combined high frequency and arc plasma sources were used to provide high deposition rate and an opportunity to operate with heat sensitive substrate such as plastic, glass etc. Using this method there were obtained: pads on detectors of ionizing radiation, optically transparent protecting coverings for plexiglass, connecting coverings on mica for ultra-frequency emitter. |
format |
Article |
author |
Taran, V.S. Muratov, R.M. Nezovibat'ko, Y.N. Leonovych, A.V. Sergiiets, M.A. |
author_facet |
Taran, V.S. Muratov, R.M. Nezovibat'ko, Y.N. Leonovych, A.V. Sergiiets, M.A. |
author_sort |
Taran, V.S. |
title |
Some aspects of deposition of conductive, dielectric and protective coatings on insulators with using arc discharge dc and RF bias |
title_short |
Some aspects of deposition of conductive, dielectric and protective coatings on insulators with using arc discharge dc and RF bias |
title_full |
Some aspects of deposition of conductive, dielectric and protective coatings on insulators with using arc discharge dc and RF bias |
title_fullStr |
Some aspects of deposition of conductive, dielectric and protective coatings on insulators with using arc discharge dc and RF bias |
title_full_unstemmed |
Some aspects of deposition of conductive, dielectric and protective coatings on insulators with using arc discharge dc and RF bias |
title_sort |
some aspects of deposition of conductive, dielectric and protective coatings on insulators with using arc discharge dc and rf bias |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2017 |
topic_facet |
Диагностика плазмы |
url |
http://dspace.nbuv.gov.ua/handle/123456789/122183 |
citation_txt |
Some aspects of deposition of conductive, dielectric and protective coatings on insulators with using arc discharge dc and RF bias / V.S. Taran, R.M. Muratov, Y.N. Nezovibat'ko, A.V. Leonovych, M.A. Sergiiets // Вопросы атомной науки и техники. — 2017. — № 1. — С. 265-268. — Бібліогр.: 4 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT taranvs someaspectsofdepositionofconductivedielectricandprotectivecoatingsoninsulatorswithusingarcdischargedcandrfbias AT muratovrm someaspectsofdepositionofconductivedielectricandprotectivecoatingsoninsulatorswithusingarcdischargedcandrfbias AT nezovibatkoyn someaspectsofdepositionofconductivedielectricandprotectivecoatingsoninsulatorswithusingarcdischargedcandrfbias AT leonovychav someaspectsofdepositionofconductivedielectricandprotectivecoatingsoninsulatorswithusingarcdischargedcandrfbias AT sergiietsma someaspectsofdepositionofconductivedielectricandprotectivecoatingsoninsulatorswithusingarcdischargedcandrfbias |
first_indexed |
2025-07-08T21:18:25Z |
last_indexed |
2025-07-08T21:18:25Z |
_version_ |
1837115119463563264 |
fulltext |
ISSN 1562-6016. ВАНТ. 2017. №1(107)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2017, № 1. Series: Plasma Physics (23), p. 265-268. 265
SOME ASPECTS OF DEPOSITION OF CONDUCTIVE, DIELECTRIC
AND PROTECTIVE COATINGS ON INSULATORS WITH USING ARC
DISCHARGE DC AND RF BIAS
V.S. Taran, R.M. Muratov, Y.N. Nezovibat'ko, A.V. Leonovych, M.A. Sergiiets
Institute of Plasma Physics of the NSC KIPT, Kharkov, Ukraine
E-mail: vtaran@kipt.kharkov.ua
Investigation results for technological process of low temperature plasma deposition of functional coverings for
dielectric substrate at low temperatures (50…250
o
C) are shown. Combined high frequency and arc plasma sources
were used to provide high deposition rate and an opportunity to operate with heat sensitive substrate such as plastic,
glass etc. Using this method there were obtained: pads on detectors of ionizing radiation, optically transparent
protecting coverings for plexiglass, connecting coverings on mica for ultra-frequency emitter.
PACS: 52.77.Dq, 51.30.+i
INTRODUCTION
The aim of this work was to implement and test the
method of applying different coatings onto dielectric
substrate, operating with Arc discharge and RF bias.
RF bias of a certain frequency (5 MHz) and a
variable constant voltage bias to a substrate with a
different period of application were investigated.
To operate with dielectric substrate it is necessary to
provide RF bias to a multi loop antenna which
surrounds the sample. This assistant RF field provides
additional ionization and removes the charge
accumulated on the surface of the sample.
Experimental results prove that this method
improves the coatings quality and keeps good adhesion
while reduced temperature during workflow.
Nowadays the variety of thin coatings is commonly
used in different technological applications. Coatings
which are used in electronics as a contact for sensitive
equipment are required to have an ideal surface
morphology to maintain the accuracy of measuring
devices [1], optically transparent protective coatings are
widely used in optics and everyday life in the role of
shielding for gadgets. Production such type of coating
has its own features, considering the fact that most of
the materials that are used for the substrate are dielectric
or sensitive to overheating. In order to understand the
problem completely it is very important to clarify the
difference between process of sputtering onto metal and
dielectric substrate.
In the first case we have conductive and more or less
refractory substrate material, therefore it is implied that
it is possible to provide a negative bias directly to
substrate in order to improve the quality of the coating
[2]. If the material is refractory enough we can simply
increase bias to make deposited ions have more energy
for better adhesion of the final coating.
In the second case we do not have such possibility
course material is not conductive. So we can provide a
negative bias to a base behind the sample to make
needed potential in the area of the sample.
There still will be a problem of accumulated surface
charge. To avoid it the RF field that relieves this charge
can be applied to antenna surrounding the sample. But
dielectric materials often are sensitive to overheating.
So increasing bias on the base behind the sample will
not work in this case.
The technology of direct plasma deposition is well
known. The next obvious step in improving the quality
of coatings is, getting rid of the drop component in the
plasma flow. There is a large growth of the droplet
phase at the moment of arc ignition. The last inflict the
most damage to the sample surface when reaching it.
That’s why we can observe such variety of plasma
filters with different architecture to solve this problem
[3]. The opposite effect of using filters is the reduction
of flux density that affects the deposition rate.
Further improvement of the process is the use of
both the high-frequency and arc plasma sources.
Glowing discharge provide finishing cleaning by
bombarding the substrate surface with ions of neutral
gas. Simultaneous use of these two sources provides
such bonuses as activation of the surface and additional
ionization during the workflow. The RF bias can be
applied rather to conductive substrate and vacuum
chamber or to a multi loop antenna surrounding the
dielectric sample. The antenna geometry and frequency
of bias can variate from one work to another depending
on the sample geometry and investigation condition [4].
Work with dielectric and heat sensitive materials should
be focused on pulsed regimes that prevent overheating.
Temperature of sample can be hold under control if the
combination of spattering not spattering phases is
used. During the first phase the surface is heated and
after that goes the cooling one. That process can be
miniaturized by applying RF bias via impulse generator
that can provide more sophisticated settings of the
assisting RF field.
EXPERIMENTAL SETUP
The experiments were carried out on Bulat-6 type
device, additionally equipped with a high frequency
generator. Fig. 1 schematically shows the device for RF-
cleaning and ion-plasma assisted deposition.
According to the experimental needs samples can be
installed in special containers before being placed into
multiloop-RF antenna. The form of antenna is various
according to the geometry of the samples and
experimental needs.
266 ISSN 1562-6016. ВАНТ. 2017. №1(107)
The presence of thee arc evaporators provide the
possibility to sputter multilayer in one working process.
One evaporator slot equipped with a plasma filter with
an open architecture.
Fig. 1. Scheme of the experimental setup: 1, 10
cathode; 2, 9 stabilizing coils; 3, 8 focusing coil;
4 vacuum chamber; 5 container (lining);
6 sample; 7 RF antenna; 11, 16 power supply
arcs; 12 turning device; 13 gear; 14 capacitor;
15 RF generator
RESULTS AND DISCUSSIONS
Deposition of metal contacts on to CVD (chemical
vapor deposition) diamond samples was carried out on
Bulat-6 type device. To perform in RF-cleaning and
further metal applying crystal samples of the
polycrystalline CVD diamond were placed in a special
container. Container with samples was placed inside an
electrode in the form of a multiloop RF-antenna. This
construction was mounted on a rotating device in the
center of the vacuum chamber against the Cr and SS arc
evaporators. Rotating table with sample was connected
to the RF generator via a capacitance.
The cleaning process was started simultaneously
with rotating device. Neutral Ar gas inlets and supplies
RF voltage to the target (sample container, RF-coil).
Approximate cleaning mode: the shifting voltage
Us = -(700….900) V; pressure P(Ar)=2∙10
-1
Pa. The
cleaning lasted for 3…5 minutes, and temperature was
not higher than 60 °C.
The advantages of plasma method of ion cleaning
are in its uniformity allowed processing of details of a
difficult form, and simplicity of technical realization.
The application of coatings starts immediately after
cleaning. Cr and then SS contacts applies in a single
technological cycle. A characteristic feature is pulsed
operation of the evaporator on a particular program. The
plasma ion method lead to heating the substrate
(container with the sample) up to a temperature above
permissible, therefore, there was designed a pulse mode
of operation of the evaporator with switched RF voltage
(assisted sputtering). In such a mode, the temperature
does not exceed 120 °C. Combination of plasma arc
discharge with RF discharge significantly increases the
adhesion of the film, helps to seal texture coating and
significantly reduces droplets formation
First priority task was finding suitable material to
create metal contacts. It should have suitable properties
for use in harsh conditions, but in the same time save
detector accuracy. Au and Cr were chosen as possible
candidates. Comparison of materials for contact was
carried out by analyzing the CVC and count rate of the
samples with contacts obtained by magnetron
sputtering.
Then Au contact was chemically removed and Cr
contacts were applied instead. Afterwards, the study of
electro-physical properties was repeated. Differences in
characteristics of the detectors can be seen in Fig. 2.
The pulse-height distributions of the detector signal
under α irradiation from
239
Pu source for detectors with
different contact materials (Cr, Au) are shown in Fig. 3.
-400 -200 0 200 400
-0,10
-0,08
-0,06
-0,04
-0,02
0,00
0,02
0,04
0,06
0,08
0,10I
(н
А
)
U (В)
Au
Cr
Fig. 2. Current-voltage characteristic polycrystalline
diamond pattern with different contracts
0 100 200 300 400 500 600
10
100
1000
10000
c
o
u
n
ts
channel #
Cr
Au
Fig. 3. The pulse-height distributions of the detector
signal under α irradiation from
239
Pu source for
different contact materials (Au, Cr)
These distributions could be considered to be equal,
the existing differences are within the reproducibility of
the experiment. Based on these results, in further
experiments Cr was used as a main contact material for
developing CVD diamond detectors, because of its
significantly greater adhesion to the rough surface of
unpolished CVD diamond.
The main purpose of depositing bilayer contacts is
solving the problem of connecting detector to the
readout electronics in the operating conditions, when
heating above T=120 °C is possible, because at this
temperature the degradation of conductive adhesive
contact occurs. One of solutions of this problem is the
connection to readout electronics by soldering. Bilayer
ISSN 1562-6016. ВАНТ. 2017. №1(107) 267
contacts were deposited on CVD diamond samples,
where the first layer was chromium, and the second
layer – stainless steel.
In Fig. 4. it is shown the CVC of two samples with
the smallest and largest values of electrical resistance.
Registration of the pulse-height distributions of the
detector signal under α irradiation from
239
Pu source
performed with the following parameters of
spectrometric tract: Ubias = 400 V, the shaping amplifier
gain – 1000, shaping time = 1 s, acquisition live time
– 60 minutes.
In Fig. 5. presented an alpha particles counting rate
for investigated detectors.The difference between
investigated samples supposed to be due to inner
defects.
-400 -200 0 200 400
-0,8
-0,6
-0,4
-0,2
0,0
0,2
0,4
0,6
0,8
1,0
I
(н
А
)
U (В)
4
6
Fig. 4. CVC sample with the lowest and highest values
of electrical resistance
Fig. 5. Speed counting the registration of alpha
particles
Analog sensitivity of detectors in the fields of
electron radiation and bremsstrahlung with energy of
10 MeV was measured on linear electron accelerator
LU-10.
Further investigation of this method was carried in
work when transparency in visible spectrum was
required for protective coatings for plexiglass. The first
stage is cleaning process ion bombarding in Neutral Ar
gas 5×10
-1
Pa, URF = -500 during 20 min. The voltage
was to the target (sample container, RF-coil).
Approximate cleaning mode: the shifting voltage
Us = -(900…700) V; pressure P(Ar)=2∙10
-1
Pa. The
cleaning lasted for 3…5 min, and temperature was not higher
than 60 °C. Deposition phase Ubias = -(230…360) V,
Ia = 100 A.
Variety of exposition time during the deposition
process gives us different transparency Fig. 6.
Conductive contoured coatings were also carried for
mica details required for use in the windows of
microwave energy output.
Fig. 6. The dependence of transparency of the
wavelength. Depositing time: B 3 min; C – 4 min;
D, E – 5 min
Fig. 7. Masking container for mica samples
Windows of energy output are used in RF frequency
electrovacuum devices with millimeter and
submillimeter diapasons such as: klinotrones, generators
of the diffraction radiation etc. The use of the produced
parts will improve metal-glass output windows that are
used now. It improves their manufacturability and
reliability, and in its turn improves the structural
reliability of the device as a whole.
Approximate cleaning mode: the shifting voltage
Us = -400…450 V; pressure P(Ar)=2∙10
-1
Pa. The
cleaning lasted for 3…5 min, and temperature was not
higher than 60 °C. Deposition phase Ubias = -(90…50) V,
Ia = 100 A.
CONCLUSIONS
In this article it was shown the usage of combined
high frequency and arc plasma sources for applying
conducting, dielectric and protecting coatings onto
268 ISSN 1562-6016. ВАНТ. 2017. №1(107)
different dielectric substrates at low temperatures
(50…250
o
C). The aim of the study was to find the most
optimal technological regime of deposition depending
on the substrate material. This method provided high
deposition rate and gave an opportunity to operate with
heat sensitive substrates such as plastic, glass etc.
Plasma filter with open architecture was used to
decrease droplet fraction which is the main problem of
obtaining high-quality coatings. Assisting RF bias
played the primary role in deposition process. In case of
dielectric as a substrate material there is a problem of
accumulated surface charge and usage of the RF bias
could handle it.
The obtained samples possessed all required
properties and were tested in working regimes.
This work has been performed in part within the
STCU-NASU project #6183.
REFERENCES
1. A.V. Leonovych, V.S. Taran. Combined high
frequency and arc plasma sources for contacts
application // Europhysics conference abstracts, 2015,
vol. 39E ISBN 2-914771-98-3, P1.305.
2. V.P. Tabakov. Formation of wear-resistant ion-
plasma coatings of the cutting tool. Moscow:
"Engineering", 2008, p. 59-62.
3. A.I. Ryabchikov, I.A. Ryabchikov, I.B. Stepanov,
Y.P. Usov. High-frequency short-pulsed metal plasma-
immersion ion implantation or deposition using filtered
DC vacuum-arc plasma // Surface and Coatings
Technology. 2007, v. 201(15), p. 6523-6525;
doi: 10.1016/j.surfcoat.2006.09.053.
4. Nigamananda Samal, Hui Du, Russell Luberoff,
Krishna Chetry, Randhir Bubber, Alan Hayes, and
Adrian Devasahayam. Low-temperature (≤200°C)
plasma enhanced atomic layer deposition of dense
titaniumnitride thin films // Journal of Vacuum Science
and Technology A. 2013, v. 31, p. 01A137;
doi: 10.1116/1.4769204.
Article received 22.01.2017
НЕКОТОРЫЕ АСПЕКТЫ ОСАЖДЕНИЯ ПРОВОДЯЩИХ, ДИЭЛЕКТРИЧЕСКИХ И ЗАЩИТНЫХ
ПОКРЫТИЙ НА ИЗОЛЯТОРЫ С ИСПОЛЬЗОВАНИЕМ ДУГОВОГО РАЗРЯДА И ВЧ-СМЕЩЕНИЯ
В.С. Таран, Р.М. Муратов, Ю.Н. Незовибатько, А.В. Леонович, М.А. Сергиец
Показаны результаты исследования технологического процесса низкотемпературного плазменного
осаждения функциональных покрытий для диэлектрической подложки при низких температурах
(50…250 °С). Для обеспечения высокой скорости осаждения и возможности работать с
теплочувствительными подложками, такими как пластик, стекло, были использованы комбинированные
высокочастотные и дуговые источники плазмы. С помощью этого метода были получены: детекторы
ионизирующего излучения, оптически прозрачные покрытия для плексигласа, соединительные покрытия на
слюде для ультрачастотного излучателя.
ДЕЯКІ АСПЕКТИ ОСАДЖЕННЯ ПРОВІДНИХ, ДІЕЛЕКТРИЧНИХ І ЗАХІСТНИХ ПОКРИТТІВ
НА ІЗОЛЯТОРИ З ВИКОРИСТАННЯМ ДУГОВОГО РОЗРЯДУ ТА ВЧ-ЗМІЩЕННЯ
В.С. Таран, Р.М. Муратов, Ю.М. Незовибатько, А.В. Леонович, М.А. Сергієць
Показано результати дослідження технологічного процесу низькотемпературного плазмового осадження
функціональних покриттів для діелектричної підкладки, при низьких температурах (50…250 °С).
Комбіновані високочастотний і дуговий джерела плазми були використані для забезпечення високої
швидкості осадження і можливість працювати з теплочутливою підкладкою, такою як пластик, скло і т. д. За
допомогою цього методу були отримані: детектори іонізуючого випромінювання, оптично прозорі захисні
покриття для плексигласу, з'єднувальні покриття на слюді для ультрачастотного випромінювача.
http://ocs.ciemat.es/EPS2015PAP/pdf/P1.305.pdf
http://dx.doi.org/10.1016/j.surfcoat.2006.09.053
|