Differential operator rings over 2-primal rings
Let R be a ring, and δ be a derivation of R. It is proved that R is a 2-primal Noetherian Q-algebra implies that the differential operator ring R[x, δ] is a 2-primal Noetherian.
Saved in:
Date: | 2008 |
---|---|
Main Author: | Bhat, V.K. |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2008
|
Series: | Український математичний вісник |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/124333 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Differential operator rings over 2-primal rings / V.K. Bhat // Український математичний вісник. — 2008. — Т. 5, № 2. — С. 153-158. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
On 2-primal Ore extensions
by: Bhat, V.K.
Published: (2007) -
Prime radical of Ore extensions over δ -rigid rings
by: Bhat, V.K.
Published: (2009) -
On Pseudo-valuation rings and their extensions
by: Bhat, V.K.
Published: (2011) -
Prime radical of Ore extensions over \(\delta\)-rigid rings
by: Bhat, V. K.
Published: (2018) -
Associated prime ideals of weak σ-rigid rings and their extensions
by: Bhat, V.K.
Published: (2010)