Kaleidoscopical configurations
Let G be a group and X be a G-space with the action G × X → X, (g, x) → gx. A subset A of X is called a kaleidoscopical configuration if there is a coloring χ : X → k (i.e. a mapping of X onto a cardinal k) such that the restriction χ|gA is a bijection for each g ∊ G. We survey some recent results o...
Saved in:
Date: | 2014 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2014
|
Series: | Український математичний вісник |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/124449 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Kaleidoscopical configurations / ИОФІ. Protasov, K. Protasova амилия // Український математичний вісник. — 2014. — Т. 11, № 1. — С. 79-86. — Бібліогр.: 18 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | Let G be a group and X be a G-space with the action G × X → X, (g, x) → gx. A subset A of X is called a kaleidoscopical configuration if there is a coloring χ : X → k (i.e. a mapping of X onto a cardinal k) such that the restriction χ|gA is a bijection for each g ∊ G. We survey some recent results on kaleidoscopical configurations in metric spaces considered as G-spaces with respect to the groups of its isometries and in groups considered as left regular G-spaces. |
---|