Kaleidoscopical configurations

Let G be a group and X be a G-space with the action G × X → X, (g, x) → gx. A subset A of X is called a kaleidoscopical configuration if there is a coloring χ : X → k (i.e. a mapping of X onto a cardinal k) such that the restriction χ|gA is a bijection for each g ∊ G. We survey some recent results o...

Full description

Saved in:
Bibliographic Details
Date:2014
Main Authors: Protasov, І., Protasova, K.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2014
Series:Український математичний вісник
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/124449
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Kaleidoscopical configurations / ИОФІ. Protasov, K. Protasova амилия // Український математичний вісник. — 2014. — Т. 11, № 1. — С. 79-86. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Let G be a group and X be a G-space with the action G × X → X, (g, x) → gx. A subset A of X is called a kaleidoscopical configuration if there is a coloring χ : X → k (i.e. a mapping of X onto a cardinal k) such that the restriction χ|gA is a bijection for each g ∊ G. We survey some recent results on kaleidoscopical configurations in metric spaces considered as G-spaces with respect to the groups of its isometries and in groups considered as left regular G-spaces.