Upper bounds on second order operators, acting on metric function
We prove upper bounds on the general second order operator acting on metric function. The suggested approach does not use traditional formulas for deviations of geodesics and Jacobi fields construction and leads to the manifolds generalization of the classical coercitivity and dissipativity conditio...
Saved in:
Date: | 2007 |
---|---|
Main Author: | Antoniouk, A.V. |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2007
|
Series: | Український математичний вісник |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/124513 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Upper bounds on second order operators, acting on metric function / A.V. Antoniouk // Український математичний вісник. — 2007. — Т. 4, № 2. — С. 163-172. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Bounded solutions of a second-order difference equation with jumps of operator coefficients
by: M. F. Horodnii, et al.
Published: (2021) -
Infinitely improvable upper bounds in the theory of polarons
by: Soldatov, A.V.
Published: (2010) -
On the bounded solutions of a second-order difference equation
by: M. F. Horodnii, et al.
Published: (2019) -
Upper Bounds for Mutations of Potentials
by: Cruz Morales, J.A., et al.
Published: (2013) -
Exact values of girth for some graphs D(k,q) and upper bounds of the order of cages
by: Pikuta, P.
Published: (2008)