Distribution of Eigenvalues of Sample Covariance Matrices with Tensor Product Samples
We consider the n² × n² real symmetric and hermitian matrices Mₙ, which are equal to the sum mn of tensor products of the vectors Xμ = B(Yμ ⊗ Yμ), μ = 1, . . . ,mn, where Yμ are i.i.d. random vectors from Rⁿ(Cⁿ) with zero mean and unit variance of components, and B is an n² × n² positive definite no...
Saved in:
Date: | 2017 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2017
|
Series: | Журнал математической физики, анализа, геометрии |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/140566 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Distribution of Eigenvalues of Sample Covariance Matrices with Tensor Product Samples / D. Tieplova // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 1. — С. 82-98. — Бібліогр.: 11 назв. — англ. |