On Eigenvalue Distribution of Random Matrices of Ihara Zeta Function of Large Random Graphs

We consider the ensemble of real symmetric random matrices H(n,ρ) obtained from the determinant form of the Ihara zeta function of random graphs that have n vertices with the edge probability ρ/n. We prove that the normalized eigenvalue counting function of H(n,ρ) converges weakly in average as n, ρ...

Full description

Saved in:
Bibliographic Details
Date:2017
Main Author: Khorunzhiy, O.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2017
Series:Журнал математической физики, анализа, геометрии
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/140575
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On Eigenvalue Distribution of Random Matrices of Ihara Zeta Function of Large Random Graphs / O. Khorunzhiy // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 3. — С. 268-282. — Бібліогр.: 27 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine