On Eigenvalue Distribution of Random Matrices of Ihara Zeta Function of Large Random Graphs
We consider the ensemble of real symmetric random matrices H(n,ρ) obtained from the determinant form of the Ihara zeta function of random graphs that have n vertices with the edge probability ρ/n. We prove that the normalized eigenvalue counting function of H(n,ρ) converges weakly in average as n, ρ...
Saved in:
Date: | 2017 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2017
|
Series: | Журнал математической физики, анализа, геометрии |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/140575 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | On Eigenvalue Distribution of Random Matrices of Ihara Zeta Function of Large Random Graphs / O. Khorunzhiy // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 3. — С. 268-282. — Бібліогр.: 27 назв. — англ. |