Gap Control by Singular Schrödinger Operators in a Periodically Structured Metamaterial
We consider a family {Hε}ε>0 of εZⁿ-periodic Schrödinger operators with δ′-interactions supported on a lattice of closed compact surfaces; within a minimum period cell one has m ∊ N surfaces. We show that in the limit when ε→0 and the interactions strengths are appropriately scaled, Hε has at m...
Saved in:
Date: | 2018 |
---|---|
Main Authors: | Exner, Pavel, Khrabustovskyi, Andrii |
Format: | Article |
Language: | English |
Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2018
|
Series: | Журнал математической физики, анализа, геометрии |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/145875 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Gap Control by Singular Schrödinger Operators in a Periodically Structured Metamaterial / Pavel Exner, Andrii Khrabustovskyi // Журнал математической физики, анализа, геометрии. — 2018. — Т. 14, № 3. — С. 270-285. — Бібліогр.: 13 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Gap Control by Singular Schrцdinger Operators in a Periodically Structured Metamaterial
by: P. Exner, et al.
Published: (2018) -
Spectral Gaps of the One-Dimensional Schrödinger Operators with Singular Periodic Potentials
by: Mikhailets, V., et al.
Published: (2009) -
On infinite-rank singular perturbations of the Schrödinger operator
by: Kuzhel’, S., et al.
Published: (2008) -
Positive solutions to singular non-linear Schrödinger-type equations
by: Liskevich, V., et al.
Published: (2009) -
On spectral gaps of the Hill – Schrцdinger operator with singular potential
by: V. A. Mikhajlets, et al.
Published: (2018)