Generalized Ellipsoidal and Sphero-Conal Harmonics

Classical ellipsoidal and sphero-conal harmonics are polynomial solutions of the Laplace equation that can be expressed in terms of Lamé polynomials. Generalized ellipsoidal and sphero-conal harmonics are polynomial solutions of the more general Dunkl equation that can be expressed in terms of Stiel...

Full description

Saved in:
Bibliographic Details
Date:2006
Main Author: Volkmer, H.
Format: Article
Language:English
Published: Інститут математики НАН України 2006
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/146110
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Generalized Ellipsoidal and Sphero-Conal Harmonics / H. Volkmer // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 22 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Classical ellipsoidal and sphero-conal harmonics are polynomial solutions of the Laplace equation that can be expressed in terms of Lamé polynomials. Generalized ellipsoidal and sphero-conal harmonics are polynomial solutions of the more general Dunkl equation that can be expressed in terms of Stieltjes polynomials. Niven's formula connecting ellipsoidal and sphero-conal harmonics is generalized. Moreover, generalized ellipsoidal harmonics are applied to solve the Dirichlet problem for Dunkl's equation on ellipsoids.