Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring

We present a study of the two species totally asymmetric diffusion model using the Bethe ansatz. The Hamiltonian has Uq(SU(3)) symmetry. We derive the nested Bethe ansatz equations and obtain the dynamical critical exponent from the finite-size scaling properties of the eigenvalue with the smallest...

Full description

Saved in:
Bibliographic Details
Date:2010
Main Author: Wehefritz-Kaufmann, B.
Format: Article
Language:English
Published: Інститут математики НАН України 2010
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/146319
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring / B. Wehefritz-Kaufmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 38 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine