A View on Optimal Transport from Noncommutative Geometry
We discuss the relation between the Wasserstein distance of order 1 between probability distributions on a metric space, arising in the study of Monge-Kantorovich transport problem, and the spectral distance of noncommutative geometry. Starting from a remark of Rieffel on compact manifolds, we first...
Gespeichert in:
Datum: | 2010 |
---|---|
Hauptverfasser: | D'Andrea, F., Martinetti, P. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2010
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/146358 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | A View on Optimal Transport from Noncommutative Geometry / F. D'Andrea, P. Martinetti // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 44 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Non-Associative Geometry of Quantum Tori
von: D'Andrea, F., et al.
Veröffentlicht: (2016) -
Deformations of the Canonical Commutation Relations and Metric Structures
von: D'Andrea, F., et al.
Veröffentlicht: (2014) -
Noncommutative geometry and applications to astrophysics
von: S. S. Moskaliuk, et al.
Veröffentlicht: (2012) -
Noncommutative geometry and applications to astrophysics
von: S. S. Moskaliuk, et al.
Veröffentlicht: (2012) -
Balanced Metrics and Noncommutative Kähler Geometry
von: Lukic, S.
Veröffentlicht: (2010)