A View on Optimal Transport from Noncommutative Geometry
We discuss the relation between the Wasserstein distance of order 1 between probability distributions on a metric space, arising in the study of Monge-Kantorovich transport problem, and the spectral distance of noncommutative geometry. Starting from a remark of Rieffel on compact manifolds, we first...
Saved in:
Date: | 2010 |
---|---|
Main Authors: | D'Andrea, F., Martinetti, P. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2010
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/146358 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | A View on Optimal Transport from Noncommutative Geometry / F. D'Andrea, P. Martinetti // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 44 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Non-Associative Geometry of Quantum Tori
by: D'Andrea, F., et al.
Published: (2016) -
Deformations of the Canonical Commutation Relations and Metric Structures
by: D'Andrea, F., et al.
Published: (2014) -
Noncommutative geometry and applications to astrophysics
by: S. S. Moskaliuk, et al.
Published: (2012) -
Noncommutative geometry and applications to astrophysics
by: S. S. Moskaliuk, et al.
Published: (2012) -
Balanced Metrics and Noncommutative Kähler Geometry
by: Lukic, S.
Published: (2010)