A View on Optimal Transport from Noncommutative Geometry

We discuss the relation between the Wasserstein distance of order 1 between probability distributions on a metric space, arising in the study of Monge-Kantorovich transport problem, and the spectral distance of noncommutative geometry. Starting from a remark of Rieffel on compact manifolds, we first...

Full description

Saved in:
Bibliographic Details
Date:2010
Main Authors: D'Andrea, F., Martinetti, P.
Format: Article
Language:English
Published: Інститут математики НАН України 2010
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/146358
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:A View on Optimal Transport from Noncommutative Geometry / F. D'Andrea, P. Martinetti // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 44 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine