Demazure Modules, Chari–Venkatesh Modules and Fusion Products
Let g be a finite-dimensional complex simple Lie algebra with highest root θ. Given two non-negative integers m, n, we prove that the fusion product of m copies of the level one Demazure module D(1,θ) with n copies of the adjoint representation ev₀V(θ) is independent of the parameters and we give ex...
Saved in:
Date: | 2014 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2014
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/146400 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Demazure Modules, Chari–Venkatesh Modules and Fusion Products / B. Ravinder // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 10 назв. — англ. |