Demazure Modules, Chari–Venkatesh Modules and Fusion Products

Let g be a finite-dimensional complex simple Lie algebra with highest root θ. Given two non-negative integers m, n, we prove that the fusion product of m copies of the level one Demazure module D(1,θ) with n copies of the adjoint representation ev₀V(θ) is independent of the parameters and we give ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
1. Verfasser: Ravinder, B.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2014
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/146400
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Demazure Modules, Chari–Venkatesh Modules and Fusion Products / B. Ravinder // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Let g be a finite-dimensional complex simple Lie algebra with highest root θ. Given two non-negative integers m, n, we prove that the fusion product of m copies of the level one Demazure module D(1,θ) with n copies of the adjoint representation ev₀V(θ) is independent of the parameters and we give explicit defining relations. As a consequence, for g simply laced, we show that the fusion product of a special family of Chari-Venkatesh modules is again a Chari-Venkatesh module. We also get a description of the truncated Weyl module associated to a multiple of θ.