Superintegrability on Three-Dimensional Riemannian and Relativistic Spaces of Constant Curvature

A family of classical superintegrable Hamiltonians, depending on an arbitrary radial function, which are defined on the 3D spherical, Euclidean and hyperbolic spaces as well as on the (2+1)D anti-de Sitter, Minkowskian and de Sitter spacetimes is constructed. Such systems admit three integrals of th...

Full description

Saved in:
Bibliographic Details
Date:2006
Main Authors: Herranz, F.J., Ballesteros, Á
Format: Article
Language:English
Published: Інститут математики НАН України 2006
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/146443
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Superintegrability on Three-Dimensional Riemannian and Relativistic Spaces of Constant Curvature / F.J. Herranz, Á. Ballesteros // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 43 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine