Orbit Functions
In the paper, properties of orbit functions are reviewed and further developed. Orbit functions on the Euclidean space En are symmetrized exponential functions. The symmetrization is fulfilled by a Weyl group corresponding to a Coxeter-Dynkin diagram. Properties of such functions will be described....
Gespeichert in:
Datum: | 2006 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2006
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/146452 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Orbit Functions / A. Klimyk, J. Patera // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 41 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | In the paper, properties of orbit functions are reviewed and further developed. Orbit functions on the Euclidean space En are symmetrized exponential functions. The symmetrization is fulfilled by a Weyl group corresponding to a Coxeter-Dynkin diagram. Properties of such functions will be described. An orbit function is the contribution to an irreducible character of a compact semisimple Lie group G of rank n from one of its Weyl group orbits. It is shown that values of orbit functions are repeated on copies of the fundamental domain F of the affine Weyl group (determined by the initial Weyl group) in the entire Euclidean space En. Orbit functions are solutions of the corresponding Laplace equation in En, satisfying the Neumann condition on the boundary of F. Orbit functions determine a symmetrized Fourier transform and a transform on a finite set of points. |
---|