κ-Deformed Phase Space, Hopf Algebroid and Twisting
Hopf algebroid structures on the Weyl algebra (phase space) are presented. We define the coproduct for the Weyl generators from Leibniz rule. The codomain of the coproduct is modified in order to obtain an algebra structure. We use the dual base to construct the target map and antipode. The notion o...
Saved in:
Date: | 2014 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2014
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/146538 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | κ-Deformed Phase Space, Hopf Algebroid and Twisting / T. Jurić, D. Kovačević, S. Meljanac // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 65 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | Hopf algebroid structures on the Weyl algebra (phase space) are presented. We define the coproduct for the Weyl generators from Leibniz rule. The codomain of the coproduct is modified in order to obtain an algebra structure. We use the dual base to construct the target map and antipode. The notion of twist is analyzed for κ-deformed phase space in Hopf algebroid setting. It is outlined how the twist in the Hopf algebroid setting reproduces the full Hopf algebra structure of κ-Poincaré algebra. Several examples of realizations are worked out in details. |
---|