Graded Limits of Minimal Affinizations in Type D
We study the graded limits of minimal affinizations over a quantum loop algebra of type D in the regular case. We show that the graded limits are isomorphic to multiple generalizations of Demazure modules, and also give their defining relations. As a corollary we obtain a character formula for the m...
Gespeichert in:
Datum: | 2014 |
---|---|
1. Verfasser: | Naoi, K. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2014
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/146688 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Graded Limits of Minimal Affinizations in Type D / K. Naoi // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆
von: Moura, A., et al.
Veröffentlicht: (2011) -
Graded limits of minimal affinizations and beyond: the multiplicity free case for type \(E_6\)
von: Moura, Adriano, et al.
Veröffentlicht: (2018) -
Remarks on mass transportation minimizing expectation of a minimum of affine functions
von: A. V. Kolesnikov, et al.
Veröffentlicht: (2016) -
A Note on Limit Shapes of Minimal Difference Partitions
von: Comtet, A., et al.
Veröffentlicht: (2008) -
Affine curvature of plane geodesic lines on affine hypersurfaces
von: O. O. Shuhailo
Veröffentlicht: (2017)