(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces
We give two equivalent sets of invariants which classify pairs of coisotropic subspaces of finite-dimensional Poisson vector spaces. For this it is convenient to dualize; we work with pairs of isotropic subspaces of presymplectic vector spaces. We identify ten elementary types which are the building...
Gespeichert in:
Datum: | 2015 |
---|---|
Hauptverfasser: | Lorand, J., Weinstein, А. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2015
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/147140 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces / J. Lorand, A. Weinstein // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 17 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Numerical-Analytical Determination of Poisson Ratio for Viscoelastic Isotropic Materials
von: B. P. Maslov
Veröffentlicht: (2018) -
Homogeneous Poisson Structures on Loop Spaces of Symmetric Spaces
von: Pickrell, D.
Veröffentlicht: (2008) -
Regular pairings of functors and weak (co)monads
von: R. Wisbauer
Veröffentlicht: (2013) -
Regular pairings of functors and weak (co)monads
von: Wisbauer, Robert
Veröffentlicht: (2018) -
Regular pairings of functors and weak (co)monads
von: Wisbauer, R.
Veröffentlicht: (2013)