Examples of Complete Solvability of 2D Classical Superintegrable Systems

Classical (maximal) superintegrable systems in n dimensions are Hamiltonian systems with 2n−1 independent constants of the motion, globally defined, the maximum number possible. They are very special because they can be solved algebraically. In this paper we show explicitly, mostly through examples...

Full description

Saved in:
Bibliographic Details
Date:2015
Main Authors: Chen, Y., Kalnins, E.G., Li, Q., Miller Jr., W.
Format: Article
Language:English
Published: Інститут математики НАН України 2015
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/147159
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Examples of Complete Solvability of 2D Classical Superintegrable Systems / Y. Chen, E.G. Kalnins, Q. Li, W. Miller Jr // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 42 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine