Examples of Complete Solvability of 2D Classical Superintegrable Systems
Classical (maximal) superintegrable systems in n dimensions are Hamiltonian systems with 2n−1 independent constants of the motion, globally defined, the maximum number possible. They are very special because they can be solved algebraically. In this paper we show explicitly, mostly through examples...
Saved in:
Date: | 2015 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2015
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/147159 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Examples of Complete Solvability of 2D Classical Superintegrable Systems / Y. Chen, E.G. Kalnins, Q. Li, W. Miller Jr // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 42 назв. — англ. |